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Abstract

Persistent Currents in Bose-Einstein Condensates

Stuart Moulder

This thesis describes a set of experiments which probe the superfluid nature of both

single and two component Bose-Einstein condensates of 87Rb in a multiply connected

toroidal geometry.

The first part of this thesis describes the preparation and detection of persistent

currents in a toroidal Bose-Einstein condensate (BEC). The apparatus and procedure

for cooling of a dilute vapour of 87Rb atoms to degeneracy is briefly outlined. We then

explain how the condensate is transferred to a purely optical ring trap, formed at the

intersection of a horizontal sheet beam to confine against gravity, and a vertical tube

beam which produces the multiply connected geometry required for persistent flow.

Multiply charged superfluid flow is induced using a two photon transfer, and the final

angular momentum is detected kinematically in time of flight.

We study the metastability and decay of multiply charged superflow in a ring-

shaped BEC. High-charge superflow persisting for over a minute is observed, and we

clearly resolve a cascade of quantised steps in its decay. These stochastic decay events,

associated with vortex-induced 2π phase slips, correspond to collective jumps of atoms

between discrete angular momentum states. By numerical calculation of the excitation

spectrum and superflow velocity, we show the supercurrent decays rapidly if the flow

velocity approaches a critical velocity in agreement with the local sound speed. For

superflow below this limit, stochastic phase slips are also observed to occur at a much

slower rate.

This work is extended to study the stability of supercurrents in a toroidal two-

component spinor gas consisting of 87Rb atoms in two different spin states. We show

that for a large spin-population imbalance we recover the long-lived metastable be-

haviour of the single component case, with superflow limited only by atom-number

decay. However we find that the supercurrent is unstable for spin polarisations below

a well defined critical value. The role of phase coherence between the two spin compo-

nents is investigated, and it is shown that only the magnitude of the spin-polarisation
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vector, rather than its orientation in spin space, is relevant for supercurrent stability.

By continuously coupling the magnetic levels of the ground state we generate an az-

imuthal vector potential, corresponding to a non-zero magnetic flux threading the ring.

By varying this effective magnetic field we demonstrate the creation of a limited subset

of dressed states with coupled angular motion and spin composition. Application of

such a setup is presented by explaining a proposed superfluid fraction measurement.

With a view to future work, the technical limitations of our current setup are then

discussed.
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Chapter 1

Introduction

The theory of quantum mechanics has underpinned many of the greatest scientific and

technological advances in the last century. Nevertheless, for much of the time we prefer

to understand the world through classical mechanics, a high temperature approxima-

tion, where the wave-like nature of particles can be neglected. Occasionally however,

the quantum nature of the world refuses to be ignored, and in order to progress we are

forced out of our comfort zone. Superfluidity and superconductivity offer two particu-

larly striking examples where classical physics falls short. Superfluidity, the phenomena

of mass currents without viscosity, and superconductivity, the phenomena of charge cur-

rents without resistance, are fundamentally related and arise as a consequence of the

existence of a macroscopic wavefunction describing the system.

Such a wavefunction was first postulated by Einstein in 1924 [1] following the work

of Bose on blackbody radiation [2]. Einstein showed the existence of a phase transi-

tion for a gas of non-interacting bosons at low temperatures, arising purely from the

quantum statistics of the particles involved. As the temperature is lowered, a critical

threshold is reached where the interatomic distance is on the order of the coherence

length of the matter waves, and the classical viewpoint breaks down. At this point a

Bose-Einstein condensate (BEC) forms, containing a macroscopic number of particles

all occupying the same quantum state. These particles are thus described by the same

macroscopic wavefunction and the system constitutes a quantum fluid. The properties

of such a quantum fluid were shown to be vastly different from those of a classical

fluid, providing an explanation for the unfamiliar behaviour observed in superfluid and

superconducting systems.

At this point, the first such quantum fluid had already been observed, with the

discovery of superconductivity in 1911, when Onnes [3] found the resistance of solid

mercury dropped to zero at temperatures below 4 K. The connection between super-

conductivity and BEC wasn’t fully made however until later, ultimately leading to the

formulation of the landmark BCS theory in 1957 [4], which describes superconductivity

as a microscopic effect caused by the condensation of Cooper pairs of electrons in a

boson-like state. Instead, Einstein’s prediction of a macroscopically occupied condensed

state remained unproved experimentally until the discovery of superfluidity in liquid
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1.1 Introduction

helium in 1938 [5, 6], when it was found that the viscosity of liquid helium vanishes

suddenly below 2.17 K. In spite of the fact that liquid helium is strongly interacting,

it was soon argued by F. London that this transition was an example of Bose-Einstein

condensation [7].

With this insight, superflow could now be understood as an adiabatic transforma-

tion of the condensed state brought about by changes in the macroscopic boundary

conditions. Such motion would not require the presence of intermediate excited states,

and therefore could occur without energy dissipation. This interpretation lead directly

to the two-fluid model for liquid helium [8, 9], which succeeded in explaining and pre-

dicting many of the physical phenomena of superfluid helium. Fundamentally however,

a full theoretical understanding of superfluid helium is difficult due to the strength of

the atomic interactions present in the liquid phase which exclude the possibility of a

perturbative expansion from the non-interacting Bose gas considered by Einstein.

The realisation of Bose-Einstein condensation in dilute atomic gases in 1995 rep-

resented a breakthrough in the history of quantum fluids. This scientific milestone

was first achieved by the groups of E. Cornell and C. Wieman at Boulder [10], and a

few months later by W. Ketterle at MIT [11]. The significance of this achievement,

together with the decades of work on laser-cooling and manipulation of atoms which

preceded it, were recognised by the Physics Nobel prizes of 1997, 2001, and 2005. Such

systems provide the ideal test beds for simulating and understanding the broad array

of many-body quantum phenomena observed in condensed matter physics. In part this

is due to the ever expanding arsenal of experimental tools which have now been devel-

oped to allow one to effectively construct a desired Hamiltonian. Additionally, due to

the low densities required to prevent the gas transitioning to a solid, the inter-atomic

interactions present in these systems are often sufficiently weak to permit an accurate

perturbative treatment. This is in stark contrast to the superfluid experiments of He-

lium, where the macroscopic condensed state accounts for less than 10% of the total

density [12].

The combination of a clean and controllable environment together with a tractable

theoretical framework, mean experiments on atomic condensates offer an excellent play-

ground for probing superfluidity, and by extension, superconductivity. From this, it’s

hoped that progress can be made in outstanding problems such as high temperature

superconductors, the connection between superfluidity and dimensionality, and the pre-

cise connection between superfluidity and BEC. The specific questions tackled in this

thesis relate to understanding the metastability and decay of persistent currents in

superfluids.
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1.2 Persistent currents

1.1 Persistent currents

The significance of persistent currents can be seen in an alternate definition of superflu-

idity and superconductivity, which is given by the response of the system to rotation,

or equivalently an external magnetic field1. Such a definition is explained in [13], where

the author considers liquid helium in a multiply-connected annular geometry. Starting

above the transition temperature to superfluidity, Tλ, the annulus is set into rapid ro-

tation, causing the helium in its normal state to come into rotation with the container.

The liquid is then cooled through Tλ and the container is brought to a stop. The liquid

helium, which is now in its superfluid state, will continue to rotate indefinitely, form-

ing a persistent mass current. For a stationary container, this rotating state cannot

be the thermodynamic equilibrium, and so is an example of an extremely long-lived

metastable state. Such behaviour is characteristic of the superfluid state only, where

angular momentum is conserved.

The equivalent phenomena in superconducting systems is the conservation of mag-

netic flux. Starting with a cylindrical superconductor above the transition temperature

Tc, an external magnetic field is applied along the axis of symmetry. The sample is

then cooled below Tc and the field removed. The analogous effect in superconductors is

now observed, where a persistent surface charge current forms, generating a magnetic

field such that the flux penetrating the sample remains unchanged. In both cases, the

systems remain in an excited metastable state due to the presence of a free energy bar-

rier to decay, the origin of which is the presence of a macroscopically occupied quantum

state.

The stability and eventual decay of such supercurrents have been studied for decades

in both helium and superconductors, however the decay mechanism is still not fully un-

derstood. Persistent currents in dilute atomic BECs therefore offer an ideal platform

with which to make further progress, and in addition, to explore the relationship be-

tween condensation and superfluidity.

1.2 Thesis outline

This thesis details our work on the stability and decay of persistent currents in di-

lute annular BECs confined to a toroidal geometry. The remainder of this thesis is

structured as follows:

� Chapter 2 provides a theoretical background to the phenomena of Bose-Einstein

condensation and superfluidity.

� Chapter 3 covers the experimental methods necessary for producing condensates

of 87Rb, as well as the physical principles relevant to preparing and studying

1One can show that the Hamiltonian for a neutral atom in a rotating frame of reference is equivalent
to that of a charged particle in a magnetic field
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1.2 Thesis outline

persistent currents.

� Chapter 4 describes our experimental setup for creating an all-optical ring trap

and preparing a state of definite rotation using a two-photon transition to imprint

an azimuthal phase winding onto the condensate wavefunction. The method

for kinematic detection of rotation by time-of-flight expansion is also presented.

The significance of a multiply-connected geometry for long-lived supercurrents

is illustrated by studying the rapid loss of angular momentum through vortex

dynamics in a simply-connected rotating condensate.

� Chapter 5 presents our first results on the metastability and decay of persistent

currents, which are published in [14]. We demonstrate the extreme metastability

of multiply-charged superflow persisting for over a minute. The persistent current

is found to decay in a cascade of quantised decay steps which unambiguously con-

firms that 2π phase slips are the supercurrent decay mechanism. The dynamics

of these phase slips is shown to be stochastic, with a probability which increases

as the flow velocity approaches a critical velocity set by the local sound speed.

� Chapter 6 extends our studies to a two-component spinor condensate, the results

of which are published in [15]. We identify a regime at large population imbalances

where the two-component supercurrent is fundamentally stable and exhibits the

long-lived metastability observed in the single-component case. Below a well

defined critical population imbalance however, we show the presence of both

components means the supercurrent is fundamentally unstable.

� Chapter 7 discusses our current progress towards creating an azimuthal vector

potential, analogous to generating a rotating frame of reference. We present

some preliminary experimental results, and describe the technical hurdles which

remain.

� Finally, in chapter 8 we summarise our results and mention possible directions

for future work.
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Chapter 2

Theory of Bose-Einstein condensation and

superfluidity

This chapter presents some of the theory behind Bose-Einstein condensation (BEC) and

attempts to illuminate the intrinsic connection between the phenomena of condensation

and superfluidity. We start by discussing how the BEC phase transition arises in the

ideal Bose gas purely as a result of the quantum statistics of the particles. The role of

interactions is then introduced and the excitation spectrum of the weakly interacting

Bose gas is calculated. From this we show the concept of superfluid flow as adiabatic

motion of the condensate leads directly to the ideas of a critical velocity and quantised

vortex states.

2.1 Condensation of an ideal Bose gas

For non-interacting bosons in thermodynamic equilibrium, the mean occupancy of a

single-particle state of energy ε at temperature T is given by the Bose-Einstein distri-

bution

f(ε) =
1

exp [(ε− µ)/kBT ]− 1
, (2.1)

where kB is the Boltzmann constant and µ is the chemical potential. The chemical

potential is determined as a function of both the total atom number N and temperature

T , such that particle number is conserved. The total atom number is then given by

the product of the mean occupancy f(ε) with the density of states g(ε) summed over

all available energy levels. Assuming that the confining potential is such that the

energy level spacing is much less than kBT , we can replace the sum with an integral.

Consequently, the system can be described by a continuum of excited states plus the

discrete ground state which must be explicitly retained [16, 17]:

N = N0 +Nex = N0 +

∫ ∞
εmin

dεf(ε)g(ε), (2.2)

where N0 is the number of particles in the ground state, and Nex the number in the

excited states of the system. As the temperature is lowered the chemical potential rises
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2.1 Condensation of an ideal Bose gas

and the mean occupancy of the allowed states changes. For the distribution f(ε) to be

positive for all states, the chemical potential is limited by µ < εmin, and as a result,

while the occupation of the ground state can be arbitrarily large, the occupation number

of any excited state ν is constrained to be less than 1/(exp[(εν− εmin)/kBT ]−1). If the

total number of atoms in the excited states, Nex, is less than the total atom number, N,

the remaining atoms are accommodated in the ground state and form a condensate of

N0 atoms. We therefore quantify the phase transition to BEC as occurring at a critical

atom number Nc for a given T , or equivalently, at a critical temperature Tc for a given

N :

Nc = Nex(T, µ = εmin) =

∫ ∞
εmin

dεg(ε)
1

exp [(ε− εmin)/kBT ]− 1
. (2.3)

Within the semi-classical approximation we can define a local distribution function,

where fp(r)dpdr/(2π~)3 denotes the mean number of particles in the phase space vol-

ume dpdr:

fp(r) =
1

exp [(εp(r)− µ)/kBT ]− 1
(2.4)

The particle energies are those of a free particle at point r

εp(r) =
p2

2m
+ V (r), (2.5)

where V (r) is the external potential. With this definition we calculate the density of

particles occupying the excited states of the system as

nex(r) =

∫
dp

(2π~)3

1

exp [(εp(r)− µ)/kBT ]− 1

=
g3/2(z(r))

λ3
T

, (2.6)

where λT is the thermal de Broglie wavelength associated with the finite extent of each

particle wave packet

λT =

√
2π~2

mkBT
, (2.7)

z(r) = exp (µ− V (r))/kBT is the fugacity, and g3/2 is the polylogarithm function

defined by

gγ(z) =
∞∑
n=1

zn

nγ
. (2.8)

2.1.1 Uniform trapping potential

In a uniform system the three dimensional free particle density of states is given by

g(ε) =
V m3/2

21/2π2~3
ε1/2, (2.9)

6



2.1 Condensation of an ideal Bose gas

where V is the volume of the system. Inserting equation (2.9) into (2.2), gives the result

(2.6), with an external potential V (r) = 0, as expected. For a uniform ideal gas µ ≤ 0,

and as µ approaches zero the fugacity z(r) approaches unity, and hence g3/2(z(r)) tends

to g3/2(1) = 2.612. This gives an upper bound on the density of particles in the excited

states and gives the criteria for Bose condensation as

nλ3
T > max(nexλ

3
T ) = 2.612, (2.10)

where n is the total particle density. This equation illustrates that condensation occurs

when the inter-particle spacing, n−1/3, becomes smaller than the wavelength associated

with each particle, λT .

The critical temperature at which condensation occurs is given by (2.6) with z(r) =

1 and nex = n,

Tc =
2π~2

mkB

(
n

g3/2(1)

)2/3

. (2.11)

This gives the temperature at which condensation first occurs; combining (2.6) with

(2.11) gives the functional form of the condensate fraction for T ≤ Tc

N0

N
= 1−

(
T

Tc

)3/2

. (2.12)

2.1.2 Harmonic trapping potential

To first order we can expand any trap in three dimensions around the minimum and

approximate it to a harmonic trap with confining potential

V (r) =
m

2
(ω2
xx

2 + ω2
yy

2 + ω2
zz

2). (2.13)

This yields a quantised energy spectrum of single-particle energies that are labeled by

the non-negative quantum numbers nx, ny, nz,

εnx,ny ,nz = ~(nxωx + nyωy + nzωz) + ε0, (2.14)

where ε0 is the zero-point energy ~(ωx + ωy + ωz)/2. The onset of condensation in

a harmonic trap therefore occurs at µ = ε0. Using the harmonic oscillator quantum

numbers, equation (2.2) can be written as

N = N0 +

∫ ∞
0

dnxdnydnz
exp [~(ωxnx + ωyny + ωznz)/kBT ]− 1

, (2.15)

where again we approximate the sum to an integral, assuming kBT � ~ω0, where

ω0 = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies. This integral can

7



2.2 Weakly interacting Bose gas

be performed by changing variables ~ωini/kBT = ñi to give

N = N0 + g3(1)

(
kBT

~ω0

)3

. (2.16)

With the condition N0 = 0, we rearrange this expression to find the critical temperature

Tc =
~ω0

kB

(
N

g3(1)

)1/3

, (2.17)

and the functional form of the condensate fraction for T ≤ Tc

N0

N
= 1−

(
T

Tc

)3

. (2.18)

For an ideal gas in the absence of interactions, the density distribution of the condensate

will reflect the ground state wavefunction ψ0(r), which for a harmonic trap is given by

n0(r) = N0|ψ0(r)|2 = N0

(mω0

π~

)3/2
exp

[
−
(
x

ax

)2

−
(
y

ay

)2

−
(
z

az

)2
]
, (2.19)

where ai =
√

~
mωi

is the oscillator length. Neglecting the zero point energy, ε0, the

density distribution of the excited states for T < Tc is given by (2.6) with µ = 0

nex(r) =
g3/2(e−V (r)/kBT )

λ3
T

=
g3/2(exp

[
−m(ωxx

2 + ωyy
2 + ωzz

2)/2kBT
]
)

λ3
T

. (2.20)

For typical experimental parameters, the condensate width is much narrower than

the width of the thermal distribution. As a result, in harmonically trapped gases,

condensation occurs both in momentum space, with the macroscopic occupation of the

ground state, and in real space, with the condensate appearing as a sharp peak in the

central region of the density distribution.

2.2 Weakly interacting Bose gas

So far we have considered the ideal Bose gas, which even in the absence of interactions

exhibits a purely quantum-statistical phase transition to BEC. In reality particles will

always interact, and even in the weakly interacting limit a real Bose gas behaves quali-

tatively differently from an ideal Bose gas. Interactions between atoms will modify the

equilibrium shape and dynamics of the condensate, and play an essential role in the

superfluid properties studied in this thesis.

2.2.1 Basic scattering theory

Here we outline the basic scattering theory in the context of ultracold gases, which

has been extensively covered in textbooks and lectures [18–20]. We consider a collision
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2.2 Weakly interacting Bose gas

process between two particles, 1 and 2, of mass m, interacting through the spherically

symmetric potential V (r1 − r2). Defining the relative coordinates r = r1 − r2 and

p = (p1 − p2)/2, the Hamiltonian for the relative motion is given by(
p̂2

2mr
+ V (r̂)

)
ψk(r) = Ekψk(r), (2.21)

where mr = m/2 is the reduced mass, and Ek = ~2k2/2mr is the incident energy.

Assuming V (r) → 0 at large distances we look for solutions at |r| → ∞ with the

asymptotic form:

ψk(r) ' eik·r + f(θ)
eikr

r
, (2.22)

where θ is the angle between the incoming and outgoing waves. The physical meaning

of this collision state is the superposition of an incident plane wave with momentum k,

and a scattered wave function. The form of the scattering potential, V (r), determines

the scattering amplitude f(θ). At the very low energies considered in ultracold gases

experiments, only partial waves with zero angular momentum (l = 0) will contribute

to the outgoing wavefunction. In this s-wave scattering limit the scattering amplitude

has no angular dependence and approaches a constant, denoted by −a. Therefore in

the low energy, k → 0, limit, the wavefunction becomes

ψ(r) = 1− a

r
. (2.23)

The constant a is the scattering length, and gives the intercept of the asymptotic

wavefunction with the r axis. To relate the scattering length and the interatomic

potential V (r), we must solve (2.21) and take the same low energy limit. Rewriting

(2.21) as

(∇2 + k2)ψk(r) = U(r)ψk(r), (2.24)

where U(r) = 2mrV (r)/~2, the general solution can be written as

ψk(r) = φk(r) +

∫
d3r′G0(r− r′)U(r′)ψk(r′), (2.25)

where φk(r) = eik.r is the solution to the free particle Hamiltonian, (∇2 +k2)φk(r) = 0,

and G0(r) is a Green’s function of the Laplace operator

(∇2 + k2)G0(r) = δ3(r) =⇒ G0(r) = − 1

4π

eikr

r
. (2.26)

To compare to (2.22), we take the far field limit where r is much greater than the range

of the interaction.

|r− r′| ' r − r · r′

r
=⇒ eik|r−r

′|

|r− r′|
' eikr

r
e−ik

′·r′ , (2.27)
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2.2 Weakly interacting Bose gas

where the vector k′ = kr̂ is orientated along the direction of the scattered particle.

Within this approximation we obtain the far field form of (2.25),

ψk(r) = φk(r)− eikr

4πr

∫
d3r′e−ik

′·r′U(r′)ψk(r′)

= φk(r)− eikr

4πr
〈φk′ |U(r′) |ψk〉 , (2.28)

and by direct comparison with (2.22), we identify f(θ) as

f(θ) = − 1

4π
〈φk′ |U(r′) |ψk〉 ≡ −

1

4π

∫
d3r′e−ik

′·r′U(r′)ψk(r′). (2.29)

In the low energy limit |k′.r′| � 1, and we can replace eik
′.r′ by 1, removing the angu-

lar dependence in the scattering amplitude. Equation (2.25) is an iterative equation,

however making the first Born approximation by inserting the incoming wave on the

right hand side gives fBorn(θ) = 〈φ′k|U(r′) |φk〉 /4π. Taking the k → 0 limit we obtain

an expression for the s-wave scattering length,

a =
m

4π~2

∫
d3rV (r). (2.30)

We therefore see that in the low energy limit the details of the interaction potential are

integrated out and can be replaced by an effective potential,

V (r− r′) = gδ(r− r′), (2.31)

where the coupling constant, g, and the s-wave scattering length, a, are related by

g =
4π~2a

m
. (2.32)

Low energy collisions are therefore characterised by a single parameter, the s-wave

scattering length, independent of the details of the two-body potential.

2.2.2 Gross-Pitaevskii equation

The many-body Hamiltonian describing N interacting bosons confined in an external

potential Vext(r) is given by [16],

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ̂(r)

+
1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r), (2.33)

where Ψ̂†(r) and Ψ̂(r) are the creation and annihilation operators for a boson at position

r, and V (r− r′) is the two-body interatomic potential. The operators Ψ̂(r) and Ψ̂†(r)
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2.2 Weakly interacting Bose gas

obey the usual Bose commutation relations:

[Ψ̂(r), Ψ̂†(r′)] = δ(r− r′), [Ψ̂(r), Ψ̂(r′)] = 0, and [Ψ̂†(r), Ψ̂†(r′)] = 0. (2.34)

The time evolution of the field operator is given by the Heisenberg equation with the

many-body Hamiltonian:

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ]

=

[
−~2∇2

2m
+ Vext(r) +

∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t). (2.35)

For T � Tc, when the ground state is macroscopically occupied, we may use the

Bogoliubov mean-field description [21] and replace the field operator by

Ψ̂(r, t) = Φ(r, t) + δΨ̂(r, t), (2.36)

where Φ(r, t) = 〈Ψ̂(r, t)〉 is a complex function defined as the expectation value of the

field operator, and δΨ̂(r, t) is a small perturbation due to atoms not in the condensate.

The function Φ(r, t) is an order parameter and is referred to as the wavefunction of

the condensate. For the mean of the field operator, 〈Ψ̂(r, t)〉, to be non-zero, a well

defined phase relation must be enforced, otherwise the average over all phases of the

wavefunction would result in zero. From this, a generalised criterion for Bose con-

densation can be formed as a constraint on the first order spatial coherence function

G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 [22, 23],

lim
|r−r′|→∞

〈Ψ̂†(r)Ψ̂(r′)〉 = Φ∗(r)Φ(r′) 6= 0. (2.37)

Condensation can therefore be viewed as the onset of long-range off-diagonal order.

To zeroth order, the excited state perturbation can be ignored, and the field operator

is simply replaced by the condensate wavefunction. At low energies where s-wave

collisions dominate, the interatomic potential, V (r′−r), can be replaced by the effective

potential (2.31). Using these two approximations we obtain the time dependent Gross-

Pitaevski equation (GPE)

i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2m
+ Vext(r) + g|Φ(r, t)|2

)
Φ(r, t). (2.38)

The condensate density and number are then given by

n0(r, t) = |Φ(r, t)|2 =⇒ N0 =

∫
dr|Φ(r, t)|2. (2.39)
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2.3 Excitation spectrum

Separating out the time dependence of the condensate wave function [24], Φ(r, t) =

Φ(r)e−iµt/~, where µ is the chemical potential, we obtain the time-independent GPE(
−~2∇2

2m
+ Vext(r) + g|Φ(r)|2

)
Φ(r) = µΦ(r). (2.40)

This has the form of a nonlinear Schrödinger equation, where the effect of interactions

is to add a mean field potential, proportional to the condensate density.

2.2.3 The Thomas-Fermi regime

For most experimental parameters where N0 is sufficiently large, the kinetic energy

term is much smaller than the interaction energy term and can be neglected [19]. In

this regime the GPE simplifies to[
Vext(r) + g|Φ(r)|2

]
Φ(r) = µΦ(r), (2.41)

and the condensate density to

n0(r) = |Φ(r)|2 =
µ− Vext(r)

g
for µ > Vext(r)

= 0 for µ < Vext(r). (2.42)

For the case of a harmonic trap the condensate density profile is parabolic

n0(r) =
µ

g

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, (2.43)

where Ri =
√

2µ/mω2
i is the Thomas-Fermi radius. The chemical potential, µ, is found

from normalising the condensate wavefunction according to (2.39)

µ =
~ω0

2

(
15N0a

a0

)2/5

, (2.44)

where a0 =
√
~/mω0 is the harmonic oscillator length associated with the mean trap-

ping frequency. In reality the condensate wavefunction will deviate from this inverted

parabola at the surface, otherwise the kinetic energy associated with the discontinuity

at the Thomas-Fermi radius diverges.

2.3 Excitation spectrum

In deriving the GPE we made use of the zeroth order Bogoliubov approximation by

treating the wavefunction of the condensate as a classical field. To take into account

fluctuations about the condensed state, we now retain the first order perturbation in

(2.36), δΨ̂(r, t), which is assumed to be small. To conserve particle number on average,

the appropriate operator to consider is K̂ = Ĥ−µN̂ , where the Hamiltonian, Ĥ, is the
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2.3 Excitation spectrum

same as (2.33). To second order in the fluctuations

K̂ = Ĥ − µN̂ =E0 − µN0 +

∫
dr

(
−δΨ̂†(r, t) ~2

2m
∇2δΨ̂(r, t)

+ [Vext(r) + 2g|Φ(r, t)|2 − µ]δΨ̂†(r, t)δΨ̂(r, t)

+
g

2

(
Φ(r, t)2[δΨ̂†(r, t)]2 + Φ∗(r, t)2[δΨ̂(r, t)]2

))
, (2.45)

where E0 is the energy of the condensate wavefunction only. The equations of motion

for the operators δΨ̂ and δΨ̂† are given by

i~
∂δΨ̂

∂t
= [δΨ̂,K] and i~

∂δΨ̂†

∂t
= [δΨ̂†,K]. (2.46)

This gives the two coupled equations:

i~
∂δΨ̂

∂t
=

[
− ~2

2m
∇2 + Vext(r) + 2n0(r)g − µ

]
δΨ̂ + gΦ(r)2δΨ̂† (2.47)

−i~∂δΨ̂
†

∂t
=

[
− ~2

2m
∇2 + Vext(r) + 2n0(r)g − µ

]
δΨ̂† + gΦ∗(r)2δΨ̂ (2.48)

To solve these equations we look for solutions which are periodic in time, of the form

δΨ̂(r, t) =
∑
i

[ui(r)αie
−iεit/~ − v∗i (r)α†ie

iεit/~], (2.49)

where the operators α†i and αi create and destroy bosons in the ith excited state.

The requirement that α†i and αi satisfy the Bose commutation relations leads to the

condition ∫
dr[|ui(r)|2 − |vi(r)|2] = 1. (2.50)

Noting that the condensate wavefunction is real, we obtain the Bogoliubov equations:[
− ~2

2m
∇2 + Vext(r) + 2n0(r)g − µ− εi

]
ui(r)− n0(r)gvi(r) = 0 (2.51)

[
− ~2

2m
∇2 + Vext(r) + 2n0(r)g − µ+ εi

]
vi(r)− n0(r)gui(r) = 0 (2.52)

Solving to find the eigenvalues εi, the operator K̂ can then be expressed in the form

K̂ =
∑

i α
†
iαi + constant, which simply has the form of the excitation energy times the

number of excitations. This is most easily solved in the case of a uniform system where

the excitations have the form of plane waves.

2.3.1 Excitations in a uniform Bose gas

For a uniform Bose gas, Vext(r) = 0, and from (2.42) the chemical potential µ = n0g.

From the translational invariance of the system the solutions to (2.51) and (2.52) can
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2.3 Excitation spectrum

be written in the from

ui(r) = uq
eiq·r√
V

and vi(r) = vq
eiq·r√
V
, (2.53)

where V is the volume of the system. Substituting these solutions into the Bogoliubov

equations gives (
ε0q + n0g − εq

)
uq − n0gvq = 0 (2.54)(

ε0q + n0g + εq
)
vq − n0guq = 0, (2.55)

where ε0q = ~2q2/2m is the free particle energy. This equation can be solved by the

requirement that the determinant of the coefficients of uq and vq equals zero, leading

to the excitation energy

εq =

√(
ε0q + n0g

)2 − (n0g)2, (2.56)

and using the normalisation condition (2.50), we find that

u2
q =

1

2

(
ε0q + n0g

εq
+ 1

)
(2.57)

v2
q =

1

2

(
ε0q + n0g

εq
− 1

)
, (2.58)

where the phase freedom of the solution permits us to choose uq and vq to be real and

positive. Having found the excitation spectrum for the uniform system, we use the

expressions for uq and vq in the first order perturbation operator

δΨ̂(r, t) =
∑
q 6=0

[
uq
eiq·r√
V
αqe
−iεqt/~ − vq

e−iq·r√
V

α†qe
iεqt/~

]
, (2.59)

to express the number conserving Hamiltonian (2.45) in terms of the operators αq and

α†q:

K̂ = E0 − µN0 +
∑
q 6=0

εqα
†
qαq −

1

2

∑
q 6=0

(
ε0q + gn0 − εq

)
. (2.60)

It can now be seen that the system behaves as a collection of non-interacting bosons

with an energy given by the Bogoliubov spectrum (2.56). In the long wavelength limit

(q2 � 2mgn0/~2) the dispersion relation reduces to a linear function of q,

εq ' c~q, (2.61)

and the spectrum is sound like. Excitations are phonons and the speed of sound is

given by

c =

√
µ

m
. (2.62)
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In the short wavelength limit (q2 � 2mgn0/~2) the spectrum reduces to that of a free

particle in the mean field potential of the other atoms

εq ' ε0q + gn0. (2.63)

The transition from phonon to free particle excitation occurs when the wavelength of

the excitation ∼ ~/
√

2mn0g. This length scale is termed the healing length ξ, and

denotes the shortest distance over which the wavefunction tends to its bulk value when

subject to a local perturbation. If we consider the density varying from 0 to n over a

length scale ξ, then the competing kinetic and potential terms will balance when

~2

2mξ2
= ng =⇒ ξ2 =

1

8πna
. (2.64)

We can therefore understand that on length scales larger than ξ, the atoms are able

to move collectively as phonons, whereas on shorter scales they will behave as free

particles.

Thermal component

We now consider the depletion of the condensate due to excitations. The total particle

number is given by

N̂ = N0 +

∫
drδΨ†(r)δΨ(r). (2.65)

Using the form of the perturbation wavefunction in terms of plane waves, this takes

the form

N̂ = N0 +
∑
q 6=0

v2
q +

∑
q 6=0

(v2
q + u2

q)α
†
qαq, (2.66)

where we have made use of the Bose commutation relations for αq. This expression

shows that the condensate is depleted due to interactions, even at T = 0 when no real

excitations are present. The two-body interaction mixes the ground state components

with higher energy states, and hence the ground state of the interacting gas does not

have all atoms occupying the zero momentum state. The zero temperature depletion

of the condensate is then given by

nex

n
=

8

3
√
π

√
na3, (2.67)

which for most experimental parameters is less than a percent.

When a real excitation is added to the system, keeping the total number fixed, the

condensate is depleted by an amount

νq = u2
q + v2

q =
ε0q + gn0

εq
. (2.68)
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For large momenta, when the excitations behave as free particles, this value tends

towards unity as expected. For non-zero temperatures we can calculate the thermal

distribution of such excitations using the Bose-Einstein distribution function, fq (2.1).

Since the addition of an excitation does not change the total particle number, the chem-

ical potential is set to zero. From this, we get the thermal depletion of the condensate

density as

nex(T ) = nex(T = 0) +

∫
dq

(2π)3

ε0q + gn0

εq

1

exp(εq/kBT )− 1
. (2.69)

In deriving this expression we have used the Bogoliubov approximation, which assumes

the system is close to its ground state, and excitations are independent of one another.

As a result this expression is only valid at low temperatures; for temperatures closer

to the transition temperatures we must include higher order terms corresponding to

interactions between excitations. Such extensions are used in the Hartree-Fock and

Popov approximations, as explained in [16, 19].

2.4 Bose-Einstein condensation and superfluidity

The phenomena of superfluidity is fundamentally linked with the existence of a con-

densate; a single macroscopically occupied quantum state. In 1938, London published

the idea that superfluidity could be understood intuitively as an experimental manifes-

tation of BEC [7]. Superfluid motion, viewed as the motion of the condensed particles

as a whole, is therefore a collective phenomenon in which particles move together to

preserve the macroscopic occupation of a single state. Modification of the entire con-

densate wavefunction would have a macroscopic energy cost, therefore superfluid flow

can only be altered by depletion of the condensate as a result of the creation of exci-

tations. Below a certain critical velocity the energy to create such excitations is not

available, and the superfluid is able to flow unperturbed by its environment, and hence

without viscosity.

2.4.1 The Landau criterion

In the previous section we calculated the excitation spectrum for the interacting Bose

gas. Landau showed that if the excitation spectrum satisfies certain criteria, the motion

of the fluid does not cause energy dissipation [25]. To see this, consider the motion of

a uniform condensate, flowing at velocity vs. In the frame of reference stationary with

respect to the condensate, the excitation spectrum is the same as that found before in

equation (2.56). To find the Hamiltonian in the frame of the observer we use a Galilean
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2.4 Bose-Einstein condensation and superfluidity

transformation to obtain

H ′ =
∑
i

(pi +mvs)
2

2m
+

1

2

∑
i 6=j

V (ri − rj)

=
∑
i

(pi)
2

2m
+

1

2

∑
i 6=j

V (ri − rj) + p · vs +
Nmv2

s

2
, (2.70)

where p =
∑

i pi is the net momentum of the particles in the condensate frame. For

the fluid in its ground state (E = E0, the energy of the pure condensate, and p = 0)

the energy of the system in the frame of the observer is

E′0 = E0 +
Nmv2

s

2
. (2.71)

If we now add a single excitation to the ground state of energy εp and momentum p as

measured in the condensate frame, the new system energy in the observer frame is

E′1 = E0 +
Nmv2

s

2
+ εp + p · vs = E′0 + εp + p · vs. (2.72)

It therefore follows that an excitation cannot be created provided

εp + p · vs > 0. (2.73)

This is the Landau criterion, and for flow without viscosity it needs to hold across the

entire spectrum for all p. If the Landau criterion is violated, the relevant excitation

will have negative energy in the observer frame, and therefore will grow exponentially

with time. Energy and momentum from the coherent motion of the condensate will be

transferred to incoherent quasi-particles, and the motion of the superfluid will become

unstable. This criterion is more commonly presented as a critical velocity

vc = min

[
εp
p

]
, (2.74)

where for vs < vc, there is no mechanism for transfer of superfluid flow to heat, and

the fluid flows without viscosity. The ground state of any system is clearly for the

condensate to be stationary with respect to the laboratory frame. Superfluid flow is

therefore a long-lived metastable state, protected from decay to the true ground state

by the lack of low energy excitation states.

Taking the excitation spectrum for an interacting uniform condensate, (2.56), plot-

ted in figure 2.1, we see that the critical velocity is the speed of sound, corresponding

to exciting long wavelength phonons. Therefore a uniform BEC has a non-zero crit-

ical velocity, and at low flow velocities will behave as a superfluid. The concepts of

superfluidity and Bose-Einstein condensation are therefore fundamentally connected,

with the Landau criterion linking the onset of viscosity in a superfluid to the creation

of excitations in a condensate. For the case of a non-interacting gas, the spectrum is
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2.4 Bose-Einstein condensation and superfluidity

Figure 2.1: Excitation
spectrum for the uniform
weakly interacting Bose
gas: This illustrates that
the Landau critical veloc-
ity is equal to the speed
of sound, and viscos-
ity is therefore brought
about by the excitation of
long wavelength phonon
modes.

simply that of a free particle ε(p) = p2/2m, and hence the critical velocity disappears.

Interparticle interactions are therefore essential for the existence of superfluidity, and

intuitively we would then expect that decreasing the strength of interactions must de-

crease the critical velocity.

In reality the Landau criterion is actually only a necessary, but not sufficient con-

dition for superfluid flow without viscosity, with many systems exhibiting lower energy

excitations involving vortex like motion of the superfluid leading to superfluid turbu-

lence and unstable flow. In the classic experiments on strongly interacting He II flowing

through narrow channels, it was found that the critical velocities were typically around

two orders of magnitude lower than those expected from the Landau criterion, which

in this case corresponds to roton excitations. As discussed in Section 2.4.3, this is due

to low energy vortex states which involve a macroscopic transformation of the con-

densate wavefunction, and therefore were not initially predicted by the perturbative

method used by Bogoliubov. As first predicted by Feynman, vortices nucleate inside

the channel and carry energy away from the superfluid via the phase-slip mechanism

[26, 27]. The critical velocity for such a process is still set by equation (2.74), only now

the relevant energy and momentum are those of the vortex state.

2.4.2 Superfluid component

In describing the theory of BEC we used a two-component picture of the particle den-

sity, where the cloud could be considered to be composed of a condensed component

and a thermal component. Superfluids are also described by a two-component model

where the superfluid is made up of two interpenetrating fluids: the normal fluid associ-

ated with excitations, and the superfluid which is associated with the condensate. Since

particles are converted between the two components the two fluids are not physically

distinct, and one cannot separate the fluid into two such parts. More accurately we can

say that a quantum fluid can execute two motions at once, each with its own effective

mass. One of these motions is normal (ie. has the same properties as an ordinary

viscous fluid), but the other is the motion of a superfluid. This concept is referred to

as the two-fluid model of superfluids and is used to successfully explain many observed
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2.4 Bose-Einstein condensation and superfluidity

phenomena in liquid helium experiments, as well as predict the phenomenon of second

sound.

In many ultracold gas experiments it is common to simply equate the condensed

fraction and the superfluid fraction, however in general these two quantities take very

different values. Although superfluidity and condensation are strongly related, the def-

inition of superfluidity as dissipationless flow and the definition of condensation as the

macroscopic occupation of the ground state are clearly distinct. For low temperature
4He experiments the condensed and superfluid fractions are believed to be approxi-

mately 10% and 100% respectively [12], while in two-dimensions the superfluid fraction

can be non-zero even if the condensate vanishes [28]. To formulate a strict expression

for the superfluid and normal component we consider a gas at rest and calculate the

momentum density carried by the excitations of the system

jex =

∫
dp

(2π~)3
pfp, (2.75)

where, as in (2.69), we have used the Bose-Einstein function to find the distribution

of thermal states. Transforming to a frame moving with a velocity −vs, in which the

condensate is now moving with velocity vs, the total momentum density in this new

frame is given by

j = ρvs + jex, (2.76)

where ρ = nm is the total mass density. Using (2.72), the energy of an excitation

in this moving frame is given by εp − p.(vn − vs), where vn is the velocity of the

excitation in the original frame. As a result this transformed excitation energy enters

the Bose-Einstein function and the momentum density of the excitation spectrum is

given by

jex = ρn(|vn − vs|)(vn − vs), (2.77)

where

ρn(v) =

∫
dp

(2π~)3

p · v
v2

1

exp [(εp − p · v)/kBT ]− 1
. (2.78)

Substituting this into the expression for the total momentum density (2.76), we obtain

j = ρn(vn − vs) + ρvs. (2.79)

If we define the superfluid density as the difference between the total and normal

densities, ρs = ρ− ρn, the total momentum density can be written in the form

j = ρsvs + ρnvn. (2.80)

This clearly takes the form of two interpenetrating fluids, and we can now compare

the normal fluid fraction (2.78) to the thermal fraction derived earlier (2.69). We note

in general that the normal fluid and thermal component are not equivalent, and we

19



2.4 Bose-Einstein condensation and superfluidity

Figure 2.2: Superfluid
fraction and thermal frac-
tion of a weakly interact-
ing uniform Bose gas as a
function of temperature:
The thermal fraction in
red is calculated using
the Hartree-Fock version
of (2.69), whereas the su-
perfluid fraction in blue is
calculated using (2.78).

also find that the superfluid fraction is velocity dependent. The superfluid fraction of

a uniform weakly interacting Bose gas can be calculated using the excitation spectrum

calculated earlier (2.56) and is shown in figure 2.2 as a function of temperature. The

corresponding thermal fraction is also shown. This is calculated using the Hartree-Fock

form of (2.69), which is more accurate at higher temperatures. For this situation the

condensed fraction and superfluid fraction closely track one another, and to first order

can be considered equal.

To confirm this, we consider the case of small relative velocities where we can

expand the distribution function to first order as

ρn '
∫

dp

(2π~)3
(p · v̂)2

(
−
∂f0

p

∂εp

)
(2.81)

'
∫

dp

(2π~)3

p2

3

(
−
∂f0

p

∂εp

)
, (2.82)

where f0
p = [exp(εp/kBT )− 1]−1 is the zero velocity distribution function. Integrating

this by parts we obtain

ρn '
∫

4πdp

(2π~)3

∂

∂p

(
p4

3

∂p

∂εp

)
f0
p . (2.83)

For temperatures T � T ∗ = nU0/kB the dominant contribution comes from high

momentum states, where the energy of an excitation is approximately equal to that of

a free particle εp ' p2/2m. Equation (2.83) then simplifies to

ρn '
∫

dp

(2π~)3
mf0

p (2.84)

' mnex, (2.85)
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where we have used the T � T ∗ form of the thermal particle density in (2.69), neglecting

the zero-temperature quantum depletion. We therefore see that the thermal component

and normal component are only equal at high temperatures, where excitations behave

as free particles and contribute precisely one particle to the thermal component and

particle mass m to the normal component. At lower temperatures excitations are

collective and this relation is no longer valid.

2.4.3 Vorticity and irrotational flow

In this section we show that the connection between superfluid flow and condensate

motion constrains superfluid flow to be irrotational. This leads to quantised circulation

of the entire condensate, and the existence of quantised vortices; lines of zero density

about which the phase of the condensate wavefunction must wrap around an integer

multiple of 2π. One can show that the condensate in a rotating frame is analogous to

the physics of a charged particle in a magnetic field, and hence the irrotational nature

of the condensate maps onto the Meissner effect in superconductors [29].

Quantised circulation

Starting from the time dependent GPE (2.38) we derive the equation,

∂|Φ|2

∂t
+∇ ·

[
~

2mi
(Φ∗∇Φ− Φ∇Φ∗)

]
= 0. (2.86)

Identifying the condensate density n0 = |Φ|2, this takes the form of the continuity

equation for particle density,

∂n0

∂t
+∇ · (n0v) = 0, (2.87)

where we distinguish the velocity of the condensate as

v =
~

2mi

(Φ∗∇Φ− Φ∇Φ∗)

|Φ|2
. (2.88)

Splitting the condensate wavefunction into its amplitude and phase, Φ = feiφ, the

velocity is then simply the gradient of the phase

v =
~
m
∇φ. (2.89)

From this it then follows that the condensate velocity is irrotational,

∇× v = 0, (2.90)
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and hence the motion of the condensate is more restricted than that of a classical fluid.

Calculating the circulation, Γ, around a closed path we find

Γ =

∮
v · dl

=
~
m

∮
∇φ · dl =

~
m

2π`, (2.91)

where from the single-valuedness of the wavefunction, the phase of the wavefunction

must change by an integer multiple of 2π around a closed loop. This immediately

leads to the quantisation of circulation of the BEC. However, to create such a state

we have created a phase singularity within the closed loop, about which the phase

winds and the wavefunction is many-valued. Such a state can therefore only exist in

a multiply-connected geometry, where the condensate density vanishes at this phase

singularity. Such a multiply-connected geometry can be created either by the external

trapping potential, or by the formation of vortices; lines of zero density about which

the condensate phase winds. Using Stoke’s theorem the general form of (2.90), allowing

for such phase singularities, is

∇× v = ẑ
`h

m
δ2(r− r0), (2.92)

where ` is referred to as the charge of the singularity, δ2 is a two-dimensional delta

function in the xy plane, and r0 is the location of the singularity. This tells us that a

condensate can rotate, but at the expense of producing such phase singularities. Such

phase singularities have been experimentally observed in BECs in several experiments

including as density singularities in [30–32] and as phase singularities in [33, 34].

Quantised vortices

If we consider purely azimuthal flow of a condensate in a system with rotational sym-

metry about the z axis, from (2.91) the flow velocity is given by

vθ = `
~
mr

, (2.93)

where r is the radial distance from the trap axis, and the condensate wavefunction must

vary as eilθ, where θ is the azimuthal angle. This velocity profile is that of a vortex

line, and for the kinetic energy to remain finite the condensate density must vanish

along the axis of the trap (r = 0). Such quantised vortices were first proposed by

Onsager [35] and Feynman [36] in the context of liquid helium experiments, and were

first experimentally verified by measuring the attenuation of second sound propagating

perpendicular to the axis of rotation, due to scattering of the normal fluid by vortex

lines [37]. Since the experimental realisation of BEC, several experiments have been

able to generate and study both a single vortex [30], and vortex arrays [31, 32] in

rotating condensates.
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An important distinction to note is that although the circulation of a condensate

is quantised for all flow configurations, the angular momentum per particle of the

condensate need not be. To demonstrate this we now consider a cylindrically symmetric

trap of radius R rotating about its axis z. The angular momentum about the axis of

the trap is equal to

Lz = n2Dm

∫
rdrdθvθr, (2.94)

where n2D is the columnar particle density integrated along the axis of rotation, which

is assumed constant. The angular integral can be written in terms of the circulation∫
dθvθr =

∮
v · dl, (2.95)

which is equal to `h/m if the contour contains the vortex line, and zero otherwise. For

a system with a vortex along the axis of symmetry this simply evaluates to Lz = N`~,

and therefore the angular momentum per particle is also quantised. If the vortex is

now displaced a distance d from the axis, the total angular momentum is given by

Lz = nh

∫ R

d
rdr = N`~

(
1− d2

R2

)
, (2.96)

and the angular momentum per particle need not be quantised.

Energy of a single vortex

The creation of vortex states is clearly of significance as it allows the bulk condensate to

rotate by the formation of phase singularities where the irrotational condition is allowed

to break down. To find whether such vortices form, we first calculate the energy per

unit length of a single vortex of charge ` on axis in a uniform condensate of density

n, and radius R. This can be found approximately by simply integrating the kinetic

energy associated with the flow,

E =
nm

2

∫ 2π

0

∫ R

0
v2
srdrdθ =

πN

m
`2~2

∫ R

0

dr

r

=
πn

m
`2~2 ln

R

rc
. (2.97)

The integral diverges for r = 0, hence a cutoff rc is introduced, below which the

expression for the velocity breaks down. This cutoff is typically taken to be the healing

length, ξ in (2.64), however more accurate variational calculations give rc = ξ/1.46

[19]. In principle, the potential energy due to the density profile of the vortex should

also be included, however this can be shown to be a small contribution and is typically

included in the uncertainty of rc. Because the energy of a vortex scales as `2, the lowest

energy configuration is for the multiply charged vortex to break up into an array of `,

singly-charged vortices. The vortices will attempt to form a regular hexagonal array to

maximise their separation and minimise the total energy.
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We now consider the response of the condensate in a frame rotating with angular

velocity Ω about the axis. The energy of the vortex in the rotating frame is given by

E′ = E − ΩLz, (2.98)

where Lz is the angular momentum of the condensate in the laboratory frame. For the

case considered of a singly charged vortex on axis, the angular momentum is simply

Lz = N~, where the total atom number N = nπR2. The condition for the vortex

solution to become energetically favourable is then when the rotation velocity exceeds

a critical value given by

Ωc =
E

Lz
=

~
mR2

ln

(
R

ξ

)
. (2.99)

Therefore, for Ω < Ωc, the superfluid will remain at rest while the normal component

will be brought into rotation. As Ω is increased above Ωc it will become energetically

favourable for the condensate to rotate and form a vortex, and at even higher Ω addi-

tional vortices will enter the system and a vortex array will form. Such an experiment

was performed in [38], where the angular momentum of the condensate was measured as

the stirring rate of an auxiliary laser beam was increased. For a large range of stirring

frequencies Lz remains zero, corresponding to stirring below the critical frequency. At

Ω ' Ωc an abrupt jump in Lz was observed corresponding to the nucleation of a vortex

at the condensate surface which quickly moves to the central axis, giving Lz/N = ~.

As Ω is increased further Lz is found to increase continuously, which is facilitated by

nucleation of a secondary vortex at the surface and the motion of the first vortex off axis

due to mutual interactions between the vortices. At even higher Ω additional vortices

enter the system and Lz, determined in a non-trivial manner from their arrangement,

increases continuously. Above a certain Ω the vortex array breaks apart and the forma-

tion of a turbulent state is observed where Lz no longer increases monotonically with

Ω.

From this we see that the counter situation of a rotating condensate in a stationary

frame is an excited state, and that the ground state is the non-rotating vortex-free state.

While it’s simple to understand the ground state of such systems, the mechanism by

which a condensate gains or loses vorticity is far from trivial, and still an active area of

research. If the appropriate excitation for the system to acquire or dissipate vorticity

is not energetically accessible, then the metastable state is protected from decay to the

true ground state.

Feynman critical velocity

We now switch to a different flow geometry, relevant to our studies on persistent currents

in annular condensates and studied extensively in superfluid helium experiments. Here

we consider superfluid flow through a long narrow channel of radius R (figure 2.3). In

such a flow channel it was found that the measured critical velocity was significantly
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2.4 Bose-Einstein condensation and superfluidity

lower than that predicted by the Landau criterion, and was also dependent on the

channel geometry. It was Feynman who first suggested that these low critical velocities

could be due to the formation of vortices produced by friction with the walls [39]. The

mechanism by which such vortices are created then determines the critical velocity,

and the fate of these vortices determines the nature of the supercritical flow. We can

envisage two possibilities for nucleated vortices:

1. For velocities larger than vc, vortices nucleate as small vortex rings attached to

the container wall, which then interact with the normal fluid through mutual

friction. This allows the vortex energy to dissipate into heat and the vortex ring

shrinks steadily until reaching atomic size and decaying into quasiparticles. Such

a scenario converts superfluid kinetic energy into heat and therefore appears as

viscosity, identical to that considered by Landau.

2. Alternately, the vortex ring may grow and enter into the fluid, creating a com-

plicated tangle of vortex lines which are characteristic of a turbulent state. Such

superfluid turbulence will act to damp the superfluid flow, but via a different

mechanism to that in scenario 1.

Numerical calculations suggest that for a weakly interacting BEC the first scenario

applies [40]. Experimental evidence indicates that the superfluid flow of liquid helium

above vc is a superfluid turbulent state, corresponding to the second scenario. Under-

standing turbulent flow is a notoriously difficult problem, and as a result there are still

many open questions [41]. The mechanism by which vortices nucleate off the walls, en-

ter into the bulk of the fluid, and how turbulence damps the superfluid flow are all still

not fully understood. Nevertheless we can formulate a crude model outlined in [39, 42]

to obtain an order of magnitude estimate of the critical velocity for both scenarios.

To estimate the critical velocity we simply ask at what flow velocity is it energet-

ically favourable to place a vortex structure into the flow channel. It turns out that

the lowest energy structure to consider is a vortex ring, illustrated in figure 2.3. For a

vortex ring of radius r, the energy Er and momentum Pr are given by [43]

Er = 2π2r
n~2

m
ln
r

ξ
(2.100)

Pr = 2π2n~r2ẑ, (2.101)

where ẑ is the unit vector normal to the plane of the vortex ring. Using (2.72) the

energy of a vortex ring in the plane perpendicular to a background flow of velocity vs

is given by

E′r = Er + Pr · vs = 2π2r2n~
(

~
mr

ln

(
r

ξ

)
± vs

)
, (2.102)

where the sign characterises the sense of rotation of the vortex ring. This expression is

minimised by letting r attain its largest value, which is R, the radius of the container.
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2.5 Conclusion

Figure 2.3: Formation of a vortex ring in a flow channel: The vortex ring is a single vortex
connected back onto itself, and therefore at distances far from the ring the velocity tends to
zero. As a result, unlike a single vortex, a vortex ring has a finite energy dependent on its size
and not the size of the container it is in.

For vs > vc this energy will be negative, and hence we obtain the Feynman estimate of

the critical velocity,

vFc =
~
mR

ln
R

ξ
. (2.103)

We note that this is only an estimate as it neglects interactions of the vortex with the

walls, the energy barrier present to actually reaching such a state, and any density

modification due to the vortex and edge effects. Nevertheless (2.103) gives the correct

order of magnitude of critical velocity for liquid helium experiments, and gives the

observed scaling of vc with pipe radius R. Although here we considered the case of a

vortex ring, the same expression is obtained for the case of a vortex-antivortex pair,

separated by a distance 2R. For the case of r � ξ the curvature of the vortex can be

neglected, and hence a vortex ring of radius r maps onto a vortex-antivortex pair of

length πr.

2.5 Conclusion

In conclusion we have introduced some of the theory of BEC and superfluidity relevant

for discussing persistent currents. Of particular importance is the concept of superflow

as the translation of an interacting condensate which permits flow without viscosity be-

low a critical velocity. The value of this critical velocity is set by the allowed excitations

of the system, and in particular by the formation of vortex states. This is discussed

further in Chapter 5 for the case of a ring BEC, where the role of quantised vortices is

found to be essential in explaining the stability and eventual decay of superflow.

26



Chapter 3

Experimental methods and BEC

production

This chapter covers the experimental methods and parts of the experiment used for the

production of 87Rb BECs. Most of the work in designing and building the system for

achieving both 87Rb and 39K condensates was carried out by students before me, so I

will attempt to only briefly cover the aspects relevant for cooling to quantum degen-

eracy. For a more detailed and exhaustive explanation of this part of the experiment

refer to [44–46]. The specific sections relevant to studying persistent currents I will

cover in greater depth. This includes (i) the theory of atom-light interactions (relevant

for the production of an optical ring trap and transfer of angular momentum to the

condensate), (ii) the interaction of atoms with an external magnetic field (relevant for

defining the basis of states used in transfers and multi-component studies), and (iii)

absorption imaging (relevant for the quantitative analysis of persistent current stabil-

ity).

The experimental setup used in this work was primarily designed for the production

of 39K condensates via sympathetic cooling with 87Rb. The broad Feshbach resonance

present in 39K allows us to tune the interparticle interactions across a wide range. This

has been used in several studies performed on this system, to study the thermodynam-

ics of ultracold Bose gases [47–49] as well as condensates out of equilibrium [50, 51].

The work presented here only made use of 87Rb condensates, however due to the sig-

nificance of the 39K experiments, the system remained optimised for 39K condensate

production for much of my time.

The structure of this chapter will be as follows. The first section will outline the

experimental sequence and techniques used in cooling a room temperature vapour of
87Rb to degeneracy. The sections that follow explain some of the physics and technical

details behind these stages, with additional information provided for those stages rele-

vant to studying persistent currents. The ordering of these sections will try and reflect

the order in which they appear in the experimental sequence.
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3.1 Sequence overview

Figure 3.1: Diagram of the vacuum system, translation stage and quadrupole coil support.
Components labeled include (1) ion pumps, (2) turbo pump, (3) atom source module, (4) MOT
cell and quadrupole coils, (5) quadrupole coil mounting arm, (6) translation stage, (7) Ti-Sub
pump, and (8) science cell.

3.1 Sequence overview

The experiment is performed in an ultra-high vacuum chamber which is illustrated in

figure 3.1 [46]. 87Rb vapour is released into the Magneto-Optical Trap (MOT) chamber

(4) by heating getters fitted in (3). Following laser cooling, the atoms are magnetically

trapped and transported to the science cell (8) where they are cooled to degeneracy.

This dual-chamber setup is beneficial for two reasons. Firstly, the MOT chamber

requires sufficiently high 87Rb vapor pressure, on the order of 10−9mbar, for rapid

loading of the MOT, whereas the science cell requires very low background pressure, in

the region of 10−11mbar, to ensure the long lifetime of the atoms required for efficient

evaporative cooling and long BEC lifetime. This is achieved by splitting the system

into two regions, connected by a low-conduction section. The second advantage of this

design is to increase optical access to the BEC, which is required for imaging, trapping,

and manipulation of the condensate.

The ground state of the atoms is the 52S1/2 state, which is split into the F = 2

and F = 1 hyperfine levels, with the final BEC produced in the |F = 2,mF = 2〉 state.

For studies on persistent currents we then transfer the BEC to the |F = 1,mF = 1〉
state using a microwave transfer. The sequence outline is as follows:

1. 87Rb vapour is loaded into the MOT (4) and Doppler cooled (Section 3.3.2)

2. The quadrupole field is removed and the molasses stage cools the atoms further,

maximising phase space density (Section 3.3.3)

3. The atoms are then optically pumped into the |F = 2,mF = 2〉magnetically trap-

pable state (Section 3.4)
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3.2 Atom-light interactions

Figure 3.2: The two-level atom:
The two energy levels are sep-
arated by a transition with fre-
quency ωeg and the atom is driven
by a monochromatic plane wave of
frequency ω. The variable param-
eters are the detuning of the light
field from resonance ∆ = ω − ωeg,
and the strength of the atom-field
coupling Ω.

4. The atoms are transferred to a magnetic quadrupole trap and transported to the

low pressure science cell (8) (Section 3.5.1)

5. The quadrupole trap is transformed to a QUIC trap and the gas is evaporatively

cooled (Section 3.6)

6. The atoms are loaded into an optical dipole trap and the depth is gradually

lowered to cool the gas to BEC (Section 3.7)

7. (Optional) An adiabatic microwave sweep transfers the atoms from

|F = 2,mF = 2〉 → |F = 1,mF = 1〉 (Section 3.8)

8. All optical and magnetic fields are removed and the cloud is absorption imaged

after a variable time of flight (Section 3.9)

All subsequent experiments on persistent currents follow the same steps (1-7) to prepare

the initial BEC.

3.2 Atom-light interactions

The interaction of light and atoms is of great significance in the field of ultracold

gases. When an atom is placed in a light field the oscillating electric field induces an

electric dipole moment in the atom which then couples to the field. The effect of this is

typically divided into two process which are used extensively in the field of laser cooling

and trapping. Firstly the light may induce transitions between atomic states involving

the absorption and emission of photons. Secondly this coupling will modify the atomic

eigenstates, creating new dressed states with different eigenenergies. To understand

these processes we consider a simple two-level model of the atom.

3.2.1 Two-level atom

The two-level atom we consider is shown in figure 3.2, where the atom is simply com-

posed of a ground state |g〉 and an excited state |e〉 separated by a transition of frequency

ωeg. Incident on the atom is a time varying electric field E = êE0 cos(ωt). The dipole
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moment of the atom, d = −er, couples to the electric field producing a perturbation

H ′ = −d · êE0

2
(eiωt + e−iωt). (3.1)

The atomic wavefunction at any time can be written as a superposition of the unper-

turbed ground and excited states,

Ψ(r, t) = cg(t) |g〉+ ce(t) |e〉 e−iωegt. (3.2)

Substituting this into the time-dependent Schrödinger equation with the Hamiltonian

H = H0 +H ′, where H0 is the unperturbed Hamiltonian, gives the coupled equations

i~
dcg(t)

dt
= ce~

Ω∗

2

(
ei(ω−ωeg)t + e−i(ω+ωeg)t

)
(3.3)

i~
dce(t)

dt
= cg~

Ω

2

(
ei(ω+ωeg)t + e−i(ω−ωeg)t

)
, (3.4)

where we have defined the Rabi frequency

Ω =
E0

~
〈e|d · ê |g〉 , (3.5)

which describes the strength of the coupling between the atom and the electric field. If

we assume the field is close to resonance we can make the rotating wave approximation

(RWA) by neglecting terms which oscillate at twice the driving frequency since their

time dependence will average out to zero compared to the much slower evolution of ce

and cg. In this regime the equations simplify to

i~
dcg(t)

dt
= ce~Ω∗

ei∆t

2
(3.6)

i~
dce(t)

dt
= cg~Ω

e−i∆t

2
, (3.7)

where we have introduced the detuning from resonance ∆ = ω − ωeg.

Rabi oscillations

To obtain the time dependence of ce and cg we solve the coupled equations by differ-

entiating (3.6) and (3.7) in time to obtain the uncoupled second order equations

d2cg
dt2
− i∆dcg

dt
+

Ω2

4
cg = 0 (3.8)

d2ce
dt2

+ i∆
dce
dt

+
Ω2

4
ce = 0. (3.9)

Such equations are simply solved, and assuming only the ground state is populated at

t = 0 when the field is turned on, the population of the excited state at time t is given
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3.2 Atom-light interactions

Figure 3.3: Rabi Oscillations: This figure shows the time dependent oscillations of the excited
state population for different detunings. As the detuning increases the frequency increases and
the maximum population transferred decreases.

by

|ce(t)|2 =
Ω2

W 2
sin2

(
Wt

2

)
, (3.10)

where we define the effective Rabi frequency

W =
√

Ω2 + ∆2. (3.11)

The population of the excited state therefore undergoes Rabi oscillations at the fre-

quency W . The efficiency of transfer to the excited state depends on the detuning ∆,

with complete transfer to the excited state only possible on resonance. If we apply the

light field on resonance for duration T = π/Ω the atom undergoes a π pulse whereby

the state is flipped completely from pure |g〉 to pure |e〉. Likewise for a light pulse of

half the duration, the atom undergoes a π/2 pulse and is left in an equal superposition

of ground state and excited state (|e〉 ± |g〉)/
√

2. Such operations are used extensively

in this work.

AC Stark shift

In addition to affecting populations, the perturbing radiation also changes the energy

levels of the states. We show this by defining the new coefficients c̃g = cge
−i∆t/2 and

c̃e = cee
i∆t/2 which removes the time dependence from (3.6) and (3.7). The equations

of motion then take the form

i
dc̃g
dt

=
Ω

2
c̃e +

∆

2
c̃g (3.12)

i
dc̃e
dt

=
Ω

2
c̃g −

∆

2
c̃e, (3.13)
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Figure 3.4: Light shift of a two-
level atom interacting with an ex-
ternal electric field: The energy
shift of the ground and excited
state are shown as a function of in-
creasing Rabi frequency. The red
line is for negative detuning, and
the blue line is positive detuning.
In the limit of zero coupling the en-
ergy levels revert back to their un-
perturbed levels. The effect shown
here is exaggerated for clarity.

and the Hamiltonian is written as

Ĥ =
~
2

[
∆ Ω

Ω −∆

]
(3.14)

Diagonalising this Hamiltonian, the eigenvalues are

λ = ±~
2

√
Ω2 + ∆2, (3.15)

and the new eigenvectors can be written as∣∣e′〉 = cos θ |g〉 − sin θ |e〉 ,
∣∣g′〉 = sin θ |g〉+ cos θ |e〉 , (3.16)

where tan 2θ = −Ω/∆. These new states are the dressed states of the excited state and

the ground state plus a photon. At ∆ = 0 there is an avoided crossing and the dressed

states are split by ~Ω. The composition of the dressed states varies as a function

of detuning and on resonance the dressed states are an equal superposition of the

original ground and excited states. For far detuned light, ∆→ ±∞, the dressed states

revert to the pure unperturbed states, |g〉 and |e〉. Reversing the various coefficient

transformations we have done until this point, the energies of the excited and ground

state in the original basis are then given by

Ee = ~ωeg +
~∆

2
± ~

2

√
Ω2 + ∆2 (3.17)

Eg = −~∆

2
∓ ~

2

√
Ω2 + ∆2, (3.18)

where the top sign choice is for negative detuning (∆ < 0 corresponding to red detuning)

and the bottom sign choice is for positive detuning (∆ > 0 corresponding to blue

detuning) to give the correct unperturbed energies in the limit Ω→ 0. The perturbed

states experience a shift which is dependent on the strength and detuning of the light

field, and the overall sign of the shift depends on the sign of the detuning. This

is illustrated in figure 3.4 where the light shift is plotted as a function of increasing

electric field strength. This is known as the AC Stark shift and is used to optically
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3.2 Atom-light interactions

trap atoms by spatially varying the energy of the ground state to create a trapping

potential.

3.2.2 Optical Bloch equations

In the discussion so far, an atom in a light field undergoes oscillations between the

ground and excited states, with conservation of energy requiring that the energy is

transferred coherently to and from the external field by absorption and stimulated

emission. To include the process of spontaneous emission which limits the lifetime of

the excited state, we use the density matrix representation of the atom to account for

the loss of energy to a background field. The density operator is defined for our two

state atom as

ρ̂ = |Ψ〉 〈Ψ| =

(
ρgg ρge

ρeg ρee

)
=

(
cgc
∗
g cgc

∗
e

cec
∗
g cec

∗
e

)
. (3.19)

Diagonal elements give populations, while off diagonal elements are coherences. If a

state has non-zero coherences then there exist observables whose value depends on the

relative phase between the states |g〉 and |e〉. The time evolution of the density matrix

is given by von Neumann’s equation

dρ

dt
=
i

~

[
ρ̂, Ĥ

]
. (3.20)

The advantage of this formalism is that we can now include the effect of spontaneous

emission into the time evolution of the density operator. If the lifetime of the excited

state |e〉 is 1/Γ, it can be shown that the complete equation of motion for the density

matrix is given by [52]

dρ

dt
=
i

~

[
ρ̂, Ĥ

]
−

(
−Γρee

Γ
2 ρge

Γ
2 ρeg Γρee

)
. (3.21)

Using the Hamiltonian derived in (3.14) we obtain the coupled differential equations

ρ̇gg =
iΩ

2
(ρ̃ge − ρ̃eg) + Γρee

ρ̇ee =− iΩ

2
(ρ̃ge − ρ̃eg)− Γρee

˙̃ρge =− iΩ

2
(ρee − ρgg)− i∆ρ̃ge −

Γ

2
ρ̃ge

˙̃ρeg =
iΩ

2
(ρee − ρgg) + i∆ρ̃ge −

Γ

2
ρ̃eg. (3.22)

These equations are further constrained by the sum of the populations totalling one

(ρee + ρgg = 1), and the fact that the coherences are complex conjugates of each other

(ρ̃ge = ρ̃∗eg), reducing the number of independent variables to three. These are usually
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Figure 3.5: Evolution of the Bloch vector: (a) Evolution of the Bloch vector for the parameters
Ω = 1, ∆ = 0.3, and Γ = 0. In the absence of decay the Bloch vector is of unit length and the
atom remains in a fully coherent state. (b) Evolution of the Bloch vector for the parameters
Ω = 1, ∆ = 0.3, and Γ = 0.1. The inclusion of spontaneous emission causes the Bloch vector
to shorten and the system to decohere to a statistical mixture.

formulated as the components of the Bloch vector R = (u, v, w):

u = (ρ̃ge + ρ̃eg), v = i(ρ̃eg − ρ̃ge), w = (ρgg − ρee). (3.23)

The equation of motion of the Bloch vector is found from (3.22), to give the standard

form of the optical Bloch equations

u̇ =∆v − Γ

2
u

v̇ =∆u+ Ωw − Γ

2
v

ẇ =− Ωv − Γ(w − 1). (3.24)

In the absence of spontaneous decay (Γ = 0), the evolution of the Bloch vector can be

expressed in the more intuitive form

Ṙ = R×W, (3.25)

where we define the vector W = (Ω, 0,∆). From this it follows that Ṙ · R = 0

and Ṙ ·W = 0 and hence the Bloch vector R precesses about W at a fixed angle

at a frequency equal to |W|. This time evolution is shown in figure 3.5(a) for non-

zero detuning. This offers an intuitive method for visualising Rabi oscillations and

the sequential application of π and π/2 pulses. In figure 3.5(b) we show the effect of

spontaneous emission on the evolution of the Bloch vector. The Bloch vector spirals in
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towards W and the Bloch sphere collapses down such that the Bloch vector no longer

has unit length. This can be viewed as the decoherence of the initial pure state with

|R| = 1 towards an incoherent mixture with |R| < 1.

Steady state solutions

The inclusion of spontaneous emission means that at long times (t� Γ−1), the atoms

will no longer undergo Rabi oscillations but will reach steady state populations. Setting

the time derivatives in (3.24) to zero gives the steady state solutions
u

v

w

 =
1

∆2 + Ω2/2 + Γ2/4


Ω∆

ΩΓ/2

∆2 + Γ2/4

 . (3.26)

From this we find the steady state population of the excited state is given by

ρee =
1− w

2
=

1

2

s

1 + s+ 4∆2/Γ2
, (3.27)

where we have defined the on-resonant saturation parameter s = I/Isat = 2(Ω/Γ)2.

Here the intensity of the light field is given by I = 1
2cε0E

2
0 , where ε0 is the permittivity

of free space and c is the speed of light. The saturation intensity, Isat, describes the

strength of the transition and is given in terms of the dipole moment as

Isat =
ε0cΓ

2~2

4|ε̂ · d|2
. (3.28)

We therefore see that in the limit of high intensity, the population of the excited state

saturates at 1/2. Using the steady state excited population (3.27), the total photon

scattering rate over all directions and frequencies is then given by Γρee, which equals

Rsc =
Γ

2

s

1 + s+ 4∆2/Γ2
. (3.29)

We note that the scattering rate has a Lorentz lineshape with width Γ′ = Γ
√

1 + s,

hence at higher intensities the width increases and the line is said to be power broad-

ened.

3.2.3 Two photon processes

A Raman transition is a two-photon process involving simultaneous absorption and

stimulated emission by an atom. Figure 3.6 illustrates the coherent Raman transition

of an atom addressed by two lasers between the levels |g〉 and |e〉. The atom is excited

from the ground state |g〉 to an intermediate state |i〉, far detuned from the single photon

transition, by the absorption of light of frequency ω1 from one beam. Simultaneously

the atom emits a photon of frequency ω2 into the second beam by stimulated emission
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Figure 3.6: A Raman transition between levels |g〉 and |e〉 driven by two laser beams via
an intermediate state |i〉. Provided the detuning ∆ of the virtual state is large, single photon
excitation is negligible and the atom is coherently transferred from |g〉 to |e〉.

and ends in the excited state, |e〉. Raman transitions are extensively used in ultracold

gases with applications including Raman cooling [53] and electromagnetically induced

transparency [54]. This work uses two-photon Raman transitions to coherently transfer

the BEC between two rotational states without imparting linear momentum to the

system (See Section 4.3).

To calculate the effect of both laser beams on the atom we extend the two-level

discussion and show that for large detuning of the intermediate state |i〉, the system

behaves simply as a two-level atom with coherent Rabi oscillations between |g〉 and |e〉
and negligible occupation of the intermediate state, |i〉. Unfortunately for the situations

we consider, ∆� Γ, the dynamics of the intermediate population are very fast and can

be difficult to calculate numerically. From arguments presented in [55], one can show

that in the limit ∆� δ, the interaction of the atom with both lasers yields an effective

Rabi frequency, Ωeff, which depends on the individual Rabi frequencies of each beam,

Ωgi1 and Ωei2, as well as the detuning from single-photon resonance, ∆:

Ωeff =
Ωgi1Ωei2

2∆
. (3.30)

The Raman coupling gives rise to coherent Rabi oscillations between |g〉 and |e〉 of the

form in (3.10), with Ω replaced by Ωeff, and the relevant detuning being the two-photon

detuning δ, illustrated in figure 3.6.

The significance of the Raman transfer comes from the fact that the transfer effi-

ciency depends on the two-photon detuning, δ, while the rate of spontaneously emitted

photons depends on the single photon detuning, ∆. For δ = 0 the duration of a π-pulse

is tπ = π/Ωeff. The rate of incoherent photon scattering is the sum of the scattering
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rates for each beam, given by (3.29). For large detunings (∆� Γ) the total number of

photons scattered in a single π-pulse is then found to be

Rsctπ =
Γ

4∆2
(Ω2

gi1 + Ω2
ei2)

2π∆

Ωgi1Ωei2

=
Γπ

2

Ω2
gi1 + Ω2

ei2

Ωgi1Ωei2

1

∆
. (3.31)

Therefore we can almost eliminate spontaneous emission events and maintain coher-

ence for many Rabi oscillations by detuning both beams far from the single-photon

resonance. Unfortunately this comes at the cost of reduced effective Rabi frequency,

which scales as 1/∆2.

3.2.4 Adiabatic rapid passage

The task of coherently transferring a BEC from an occupied state to an empty one

can be achieved by applying a π-pulse to exactly flip the state vector. This requires

a pulse of radiation whose duration, power and frequency with respect to the atomic

transition need to be closely controlled for efficient transfer. Another method is to

use an adiabatic rapid passage (ARP), where the radiation is tuned above or below

the resonance frequency, and the radiation or level itself is swept through resonance.

Provided the process is performed adiabatically the atoms will remain in a single dressed

eigenstate and the dressed state itself, which is a function of the detuning, will transform

from the initial state to the final state. When the coupling between the states is by

a Raman transfer this process is referred to as stimulated Raman adiabatic passage

(STIRAP)[56]. ARP transfer schemes tend to be more robust and able to achieve

higher transfer efficiencies.

This process is illustrated in figure 3.7. If one starts in the ground state |g〉 and

applies a coupling field with frequency far below resonance, this effectively loads the

condensate into the lowest band. Sweeping the frequency across resonance the system

remains in the lowest band, and the composition of the lowest dressed state changes to

pure |e〉 for detuning far above resonance. Rapidly removing the coupling field projects

the dressed state into the original bare states. If one sweeps the frequency in the other

directions the same state transfer is observed, but this is achieved by loading into the

upper band.

The possibility of adiabatic crossing of energy levels was first considered by Landau

and Zener. They showed that for a system of two coupled states of the form

Hφ1 = ε1φ1 + ε12φ2 (3.32)

Hφ2 = ε12φ1 + ε2φ2, (3.33)
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Figure 3.7: Dressed states energy bands and decomposition: The energy levels of the dressed
bands as a function of detuning are obtained from diagonalising (3.14). The color of the band
indicates the relative decomposition of the dressed states in terms of the bare states, with blue
being pure |g〉, and red pure |e〉. In the limit of far detuning the dressed states tend toward the
corresponding labeled bare states.

the probability of adiabatically crossing from one state to the other is given by [57]

P = 1− e−2πγ , γ =
2π

~
ε212∣∣ d

dt(ε1 − ε2)
∣∣ . (3.34)

Identifying the terms ε1 = ~∆/2, ε2 = −~∆/2, and ε12 = ~Ω/2, the adiabatic criterion

is given as

Ω2 � 1

π2

∣∣∣∣d∆

dt

∣∣∣∣ . (3.35)

Sweeping faster than this will cause admixture of the other dressed state and imperfect

state transfer.

3.2.5 Optical forces

So far we have derived the AC Stark shift which exerts an optical dipole force used

for optical trapping, and we have derived the scattering rate which exerts a scattering

force used in Doppler cooling. To connect these two forces and include the effect of

spontaneous emission in our discussion of the optical dipole potential, we now derive

the complex polarizability and show that the real and imaginary parts correspond to

the dipole and scattering force respectively. This also elucidates the imaging of atomic

clouds, which behave as an object with complex refractive index.

The electric field we have considered so far has the form E(r, t) = ê(E0(r)/2)eiωt +

c.c. This induces a time-varying dipole moment of the form d(r, t) = ê(d0(r)/2)eiωt +

c.c., where the the dipole moment amplitude, d0, and the field amplitude E0, are related

by the complex polarizability

d0 = α(ω)E0. (3.36)

38



3.2 Atom-light interactions

Here we have assumed we are dealing with linear optics and that α is simply a scalar.

The dipole potential and scattering rate are then related to α by [58]:

Udip(r) = −1

2
〈d ·E〉 = − 1

2ε0c
Re(α)I(r), (3.37)

Rsc(r) =
〈ḋE〉
~ω

=
1

~ε0c
Im(α)I(r). (3.38)

The energy level shift therefore results from the in-phase interaction between the elec-

tric field and the induced dipole, while the out of phase interaction is responsible for

absorption. The expectation value of the dipole moment is given by 〈d〉 = 〈Ψ|d · ê |Ψ〉,
where the wavefunction Ψ is given by (3.2). Substituting in this expression for the

wavefunction gives

〈d〉 = degρege
iωegt + c.c.

= degρ̃ege
iωt + c.c.

= deg
(u− iv)

2
eiωt + c.c., (3.39)

where we define deg = 〈e|d · ê |g〉 = ~Ω/E0. By comparison with (3.36) we can then

identify

〈d〉 =
1

2
E0(αeiωt + α∗e−iωt)

=
1

2
(deg(u− iv)eiωt + dge(u+ iv)e−iωt)

⇒ α =
deg
E0

(u− iv). (3.40)

Using the steady state solutions of the Bloch vector (3.26) this directly gives the po-

larizability as

α = −~cε0
Isat

1

1 + I/Isat + (2∆/Γ)2

[
∆− iΓ

2

]
, (3.41)

and from this we obtain

Udip(r) = ~
∆

2

I/Isat

1 + I/Isat + (2∆/Γ)2

∆�Γ−−−→ ~Ω2

4∆
, (3.42)

Rsc(r) =
Γ

2

I/Isat

1 + I/Isat + (2∆/Γ)2

∆�Γ−−−→ ΓΩ2

4∆2
, (3.43)

where the expressions are also given in the limit of large detuning, ∆ � Γ. The

expression (3.43) is the same result as (3.29) derived earlier. We note that these results

were derived using the RWA approximation, and as a result for very large detunings

from resonance one needs to include a small correction due to the co-rotating term of

order (ω − ωeg)/(ω + ωeg).

The optical dipole force is simply obtained from the gradient of the potential, and

for the common case of large detunings used in traps (|∆| � Γ), the dipole force reduces

39



3.3 Laser cooling and trapping

to the expression

Fdip = −∇Udip ' −∇
(
~Ω2

4∆

)
. (3.44)

This approximate expression is also obtained by taking the large detuning limit of the

AC Stark energy shift derived in (3.15). In a field with spatially varying intensity or

detuning, the atom will experience a net force, the direction of which depends on the

sign of the detuning. In this work red-detuned traps (∆ < 0) are used, where the atom

is attracted to regions of high intensity. The scattering force is simply obtained from

the product of the scattering rate, Rsc, with the momentum per photon, ~k,

Fsc = ~k
Γ

2

s

1 + s+ (2∆/Γ)2
. (3.45)

3.3 Laser cooling and trapping

Having covered the interaction of light with atoms, we are now in a position to describe

the experimental techniques used to slow and spatially constrain atoms. The first of

these is the magneto-optical trap which uses the scattering component of the radiative

force to cool atoms down to the Doppler limit. The second technique is the optical

molasses stage, which employs Sisyphus cooling. To relate these techniques directly to

the experiment we first consider the 87Rb D2 transition hyperfine structure.

3.3.1 87Rb hyperfine structure

So far we have considered a simple two-level atom, however real atoms possess a far

more complicated electronic level structure with multiple ground and excited states and

several decay paths. Applying the principles of laser cooling to real atoms therefore

seems like a daunting task. Thankfully alkali atoms, which have a single valence elec-

tron, permit a perturbative and accurate calculation of their electronic level structure.

In 87Rb suitable transitions are found in the D2 transition between the 52S1/2 ground

state and 52P3/2 excited state.

The hyperfine structure of these states is illustrated in figure 3.8, along with the

transitions used in the production of a BEC. The nuclear spin for 87Rb is I = 3/2,

hence the ground state |L = 0, J = 1/2〉 is split by the hyperfine interaction into the

F = I + J = 1, 2 levels. Similarly the excited state |L = 1, J = 3/2〉 is split into the

F ′ = 0, 1, 2, 3 levels. For the MOT and Molasses stages described in Section 3.3.2 the

cooling transition is the cycling |F = 2〉 → |F ′ = 3〉 transition. To prevent pumping

to the |F = 1〉 dark state, repump light is added to continuously transfer the |F = 1〉
population to the |F ′ = 2〉 state. For the pumping stage described in Section 3.4, the

|F = 2〉 → |F ′ = 2〉 transition is used to cycle the atoms over to a magnetically trap-

pable state. The microwave transition between the two ground state hyperfine levels

|F = 1〉 → |F = 2〉 is also indicated by the green arrow. This transition is used for
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Figure 3.8: 87Rb D2 hyperfine structure: Levels are labeled by their total angular momentum,
F , and the approximate Landé g-factor, gF . The appropriate cooling and repump transitions
used in the MOT and molasses stage are indicated by the red and blue arrows respectively. The
transition for optical pumping before magnetic trapping is indicated by the purple arrow. The
microwave transition used in both evaporative cooling and the final state transfer is shown by
the green arrow.

evaporative cooling described in Section 3.6 and in the final state transfer explained in

Section 3.8. Absorption imaging makes use of the same |F = 2〉 → |F ′ = 3〉 transition

used for laser cooling.

The laser setup used to generate the cooling, repump, pumping, and imaging light is

described in detail in [45, 46]. The lasers used are two temperature controlled commer-

cial external cavity diode lasers (ECDL). Both are locked using saturated-absorption

spectroscopy, with the cooling laser locked to the |F = 2〉 → |F ′ = 2, 3〉 crossover peak,

and the repump laser locked to the |F = 1〉 → |F ′ = 1, 2〉 crossover peak. The precise

frequencies required are then obtained using acousto-optic modulators (AOM) to shift

the laser frequencies. Sufficient cooling power is achieved by using the cooling laser

to seed an integrated master-oscillator-power-amplifier which provides several hundred

mW of cooling light used in the MOT beams.
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3.3.2 Magneto-optical trap (MOT)

A MOT is a combination of light and magnetic fields used to both cool and spatially

confine atoms, and was first demonstrated in [59]. The ability of the MOT to capture

and cool a room temperature atom vapour down to a few hundred µK means that it

has become the starting point for most experiments on ultracold gases. A MOT is

formed by three pairs of counter-propagating red-detuned laser beams, overlayed with

a magnetic quadrupole field, such that the magnetic field strength increases along all

directions from the origin. This is illustrated in figure 3.9 for one dimension for the

example of cooling the F = 0 state using the F = 0 → F ′ = 1 transition. If one

initially neglects the magnetic gradient there is no shift of the Zeeman levels and the

lasers are red-detuned of resonance for all z. However, the one-dimensional velocity

of the atom along the direction of the beams, v, causes a Doppler shift of ±kv of the

observed frequency of the laser light. As a result the motion of an atom towards one of

the beams causes it to Doppler-shift into resonance and the resultant scattering force

due to absorption slows the atom, creating a viscous damping force. This effect is called

Doppler cooling and is used to cool the atoms in a technique called optical molasses.

To spatially confine as well as cool the atoms a magnetic gradient must be included,

creating a MOT.

As described in Section 3.5, the quadrupole field has a magnetic zero at the origin,

and the magnitude of the field increases linearly with distance. The effect of this

gradient is to cause the energy levels of the three sub-levels of the F = 1 level to vary

linearly with the atom’s position. In a MOT the polarisation of the pair of beams with

respect to a fixed direction in space is chosen to be opposite: σ+ and σ−. The effect

of this is that when an atom is displaced from z = 0, the selection rules mean that

absorption from the beam that will push the atom back towards z = 0 will dominate

over absorption from the opposite beam. This imbalance of radiative force caused by

the Zeeman effect creates a position dependent force, confining atoms at the origin.

Using the scattering force derived in (3.45), we can write the overall scattering

force in the MOT configuration as

FMOT = F σ
+

sc

(
∆− kv − µB′

~
z

)
− F σ−sc

(
∆ + kv +

µB′

~
z

)
(3.46)

= −2
∂Fsc

∂∆

(
kv +

µB′

~
z

)
, (3.47)

where µ is the dipole moment of the atom, and B′ is the magnetic field gradient. By

expanding the expression to first order we see that the motion of an atom in the MOT

is equivalent to damped simple harmonic motion. The MOT configuration has a high

capture velocity and therefore is able to trap and cool room temperature atom vapour.

The limit to which an atom cloud can be cooled in a MOT is given by the Doppler

limit. This limit arises due to the recoil energy associated with random fluctuations
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Figure 3.9: Mechanism for a 1D magneto-optical trap illustrated for the F = 0 to F = 1
transition. Two counter-propagating circularly polarised beams, red-detuned of the zero field
transition, are overlayed with a magnetic field gradient. The handedness of the beams is the
same with respect to their direction of propagation, but opposite with respect to the field
axis. The magnetic gradient adds spatial confinement, bringing atoms far from the origin into
resonance with the appropriately polarised beam.

about the mean number of photons absorbed and spontaneously emitted [55]. This

gives rise to the Doppler cooling limit

T > TD =
~Γ

2kB
, (3.48)

which for the case of 87Rb gives a temperature of 146 µK.

As mentioned in Section 3.3.1 the cooling transition used is the |F = 2〉 → |F ′ = 3〉
transition. Because the laser polarisation with respect to the field direction is σ−, the

precise transition is the |F = 2,mF = −2〉 → |F ′ = 3,mF ′ = −3〉 transition, which is a

closed cycling transition since |F ′ = 3,mF ′ = −3〉 should only decay back to

|F = 2,mF = −2〉. Due to the continuous absorption and emission of photons, off

resonant excitation to the |F ′ = 2〉 state can occur, which can then decay to the |F = 1〉
ground state which is optically dark to the cooling light. To prevent all the atoms

accumulating in this state, repump light which is resonant with the |F = 1〉 → |F ′ = 2〉
transition is also present in the MOT stage and clears out this dark state.

For our MOT we typically use 130 mW of cooling light, red-detuned 3.1Γ below

resonance, where Γ ≈ 6 MHz is the linewidth of the excited state. The 1/e2 beam

diameter of our MOT beams is ≈ 3 cm. Overlapped with the cooling beams is 10 mW

of resonant repump light. The magnetic gradient is 6.4 G cm−1 along the vertical

direction and 3.2 G cm−1 in the horizontal plane. Typical MOT loading time is about

15 seconds and the atom number saturates at ≈ 5× 109.
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3.3 Laser cooling and trapping

3.3.3 Sub-Doppler cooling

Sub-Doppler cooling was first achieved using the standard molasses technique described

above [60]. This unexpected effect arises due to the fact that real atoms have a ground

state with degenerate magnetic sublevels which were neglected in the previous discus-

sion. The first explanation of temperatures observed below the Doppler cooling limit

was provided by the mechanism of Sisyphus cooling [61], which can be used to explain

many of the sub-Doppler cooling techniques which have been developed. To briefly ex-

plain the process, we consider a simplified system consisting of a J = 1/2 ground state

(with degenerate mJ = ±1/2 magnetic sublevels) and a J ′ = 3/2 excited state (with

degenerate mJ = ±3/2,±1/2 magnetic sublevels). This atom is dressed in zero mag-

netic field with two counter-propagating red-detuned laser beams, linearly polarised

orthogonal to one another 1.

The interference of the two beams creates a polarisation standing wave, where the

polarisation varies from σ+ to π to σ− with a period of λ/2. If the ground state has

degenerate magnetic sublevels, the light shift experienced by each sublevel will be po-

larisation dependent, and the degeneracy will be lifted. For the case of mJ = +1/2,

the electric dipole transition for the σ+ transition to mJ ′ = 3/2 is stronger than the π

transition to mJ ′ = 1/2 and stronger still than the σ− transition to mJ ′ = −1/2, with

the ratio 3 : 2 : 1. This relates directly to the Rabi frequency, Ω, hence the light shift

will vary spatially along with the polarisation, being largest where the light is pure

σ+ and smallest where it’s pure σ−. For the mJ = −1/2 ground state the ordering of

the ratios is flipped and the light shift will also vary spatially, but π out of phase with

respect to that of the mJ = +1/2 state. This effect is illustrated in figure 3.10.

The other effect of the polarisation standing wave is spatially selective pumping

of the ground states. In regions of pure σ+ polarisation the mJ = +1/2 state can

only transition to mJ ′ = 3/2, where it spontaneously decays back to its original state.

Conversely the mJ = −1/2 is pumped to the mJ = +1/2 ground state since it can only

transition to the mJ ′ = +1/2 excited state, where there is a possible decay path to

the mJ = +1/2 ground state. We therefore see that in regions of σ+ polarisation the

atoms are pumped towards the lower energy mJ = +1/2 ground state, and similarly in

regions of σ− polarisation the atoms are pumped towards the lower energy mJ = −1/2

ground state. This is illustrated in figure 3.10, where we see that an atom moving

in this potential will repeatedly climb the potential barrier of one state and then be

pumped to the potential minima of the other state, thus giving up its kinetic energy to

the background field. The limit of such a cooling method is the recoil energy associated

with spontaneous emission which provides a lower threshold for the temperature called

the recoil limit:

T > Trec =
~2k2

kBm
. (3.49)

1This is the textbook lin ⊥ lin configuration, but the effect is also present for two circularly polarised
beams of opposite handedness

44



3.4 Optical pumping

Figure 3.10: Sisyphus cooling mechanism in the lin ⊥ lin configuration: The counter prop-
agating beams create a polarisation standing wave, where the polarisation varies between σ+,
π, and σ− with period λ/2. Due to the different electric dipole transitions of the different
magnetic sublevels this creates a periodic shift in the ground state energies. The polarisation
standing wave preferentially pumps atoms from the upper ground state to the lower, hence as
an atom moves it climbs a potential barrier and is then pumped to a potential minima. This
removes the kinetic energy of the atoms, cooling the cloud.

For the case of 87Rb this gives a recoil temperature of 180 nK, well below the limits of

Doppler cooling.

The typical experimental sequence used in our optical molasses involves removing

the magnetic field gradient and further detuning the MOT beams to −4.1Γ. The power

of the cooling light is also reduced to about 60 mW. The molasses stage typically only

lasts about 6ms, after which the 87Rb atoms reach ≈ 50 µK. Our molasses stage is

optimised to maximise phase space density, rather than actually achieve cooling to

Trec.

3.4 Optical pumping

At the end of the MOT and molasses stages the atoms are distributed between the

various mF states of the F = 2 manifold. As explained in Section 3.5, only states

with mF = 2, 1 are magnetically trappable, hence to avoid losing over half the atoms

the cloud is optically pumped to the |F = 2,mF = 2〉 state before the quadrupole field

is ramped up. Transferring the atoms to the stretched state is also beneficial for two

other reasons. Firstly the increased magnetic dipole moment of the mF = 2 state

provides tighter magnetic confinement. This improves efficiency of transport to the

science cell, and increases the elastic collision rate which is important for efficient
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3.5 Atoms in an external magnetic field

evaporative cooling. Secondly, the presence of other spin states allows inelastic spin-

exchange collisions which can lead to additional heating and losses. While this effect

is only modest in the case of 87Rb, removal of atoms in the |F = 2,mF = 1〉 state

significantly improves the sympathetic cooling of 39K.

The pumping sequence starts after molasses by removing the cooling beams but

retaining the repump light, allowing the atoms to fall under gravity. A guide field of

several Gauss is ramped up over 800 µs to provide a quantisation axis for the atoms,

defining the polarisation of the pumping light. The pumping light is then flashed

on for approximately 80 µs with an intensity of about the saturation intensity. The

pumping light is resonant with the |F = 2〉 → |F ′ = 2〉 transition, as illustrated in figure

3.8. The pumping light is chosen to be σ+ polarised, exciting transitions of the type

|F = 2,mF 〉 → |F ′ = 2,mF + 1〉. While the excited F ′ = 2 state can spontaneously

decay back to the F = 2 state via any ∆mF = 0,±1 transition, the polarisation of the

pumping light ensures the atoms migrate towards the |F = 2,mF = 2〉 state. Once in

the |F = 2,mF = 2〉 state, the atoms are dark to the light since there is no ∆mF = +1

transition, therefore for perfect σ+ polarisation the atoms accumulate in the stretched

state, where they are then transparent to the pumping light. The repump light is

present to transfer any atoms which decay to the F = 1 state back into the pumping

cycle.

To test the efficiency of the pumping stage we load the atoms into the magnetic

trap and then back into the MOT. Only those atoms pumped into a magnetically

trappable state will remain, causing the MOT to load from a non-zero population. With

pumping this starting population can reach ≈ 80% of the saturated MOT population,

compared to only 40% without pumping. We can test the correct sign of the pumping

polarisation by reversing the direction of the guide field and observing anti-pumping to

the |F = 2,mF = −2〉 state, and a much lower starting MOT value.

3.5 Atoms in an external magnetic field

The Zeeman Hamiltonian describing the interaction of an atom with a static external

magnetic field B is given by

HB =
µB
~

(gSS + gLL + gII) ·B, (3.50)

where S is the total electronic spin operator, L is the total electronic orbital angular

momentum operator, I is the internal nuclear spin operator, and gS , gL, and gI are the

corresponding Landé g factors. The interaction of the electron spin with the effective

magnetic field of the nucleus leads to the spin-orbit coupling term in the atomic Hamil-

tonian which couples S and L into the total angular momentum J = L + S. With J as
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3.5 Atoms in an external magnetic field

a good quantum number, the magnetic Hamiltonian now takes the form

HB =
µB
~

(gJJ + gII) ·B, (3.51)

where gJ is given in terms of gS and gL [55]. If we now include the hyperfine term

in the atomic Hamiltonian, arising due to the interaction of the nuclear spin with the

effective magnetic field of the electron, the relevant Hamiltonian to diagonalise is

H = AI · J +
µB
~

(gJJ + gII) ·B, (3.52)

where A is the hyperfine structure constant, and is equal to A = h × 3.417 GHz for
87Rb. This can be easily solved in the two limiting cases of low and high field. In both

cases we neglect the nuclear Zeeman term since the coefficient gI is smaller than gJ by

about three orders of magnitude.

Low field: When the energy shift due to the field is much smaller than the hyperfine

term, the coupling between I and J dominates over that with the magnetic field

and we may define F = I + J, where F and mF are good quantum numbers. The

Zeeman terms now act as perturbations to the states labeled by |F,mF 〉 and the

energy levels are

EAZ =
1

2
A[F (F + 1)− I(I + 1)− J(J + 1)] + gFmFµBBz, (3.53)

and the corresponding gF is given in terms of gJ [55]. The first term is the usual

hyperfine splitting, while the second term gives the field dependence. Different

mF states split linearly with magnetic field according to

∆E|F,mF 〉 = µBgFmFBz, (3.54)

and hence the energy spacing E|F,mF 〉 − E|F,mF±1〉 is equal for all mF in a given

F manifold.

High field: When the energy shift due to the field is much larger than the hyperfine

term, I and J will couple strongly to B and hence the states will be labeled by

|mJ ,mI〉. The energy levels are then given by

EPB = AmJmI + gJmJµBBz, (3.55)

and now mJ determines the scaling of the energy with magnetic field.

For intermediate field strengths the full Hamiltonian (3.52) must be diagonalised. This

can be done by expanding the hyperfine term into raising and lowering operators using

the identity

I.J = IzJz +
1

2
(I+J− + I−J+). (3.56)
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Figure 3.11: Energy shift in a magnetic field: (a) Hyperfine structure of the 52S1/2 ground
state of 87Rb in an external magnetic field. States are labeled with their low field quantum
number |F,mF 〉. (b) The energy difference ∆E = E(|F = 1,mF = 0〉 → |F = 1,mF = 1〉) −
E(|F = 1,mF = −1〉 → |F = 1,mF = 0〉).

For the state we care about, which is the ground state of the D line transition with

I = 3/2 and J = 1/2, there exists an analytical form of the solution called the Breit-

Rabi formula [62]:

E|J=1/2,mJ ,I,mI〉 = − ∆Ehfs

2(2I + 1)
+ gIµBmB ±

∆Ehfs

2

(
1 +

4mx

2I + 1
+ x2

)1/2

, (3.57)

where ∆Ehfs = A(I+1/2) is the zero field hyperfine splitting, m = mI±mJ = mI±1/2,

and

x =
(gJ − gI)µBB

∆Ehfs
. (3.58)

This is plotted in figure 3.11(a) for the ground state of 87Rb, 52S1/2. We see that

the energy splitting is approximately linear up to about 500 G, and therefore the low

field approximation for the energy splitting (3.53) can be used for most experimental

parameters. We note however in figure 3.11(b) that the energy differences E|F=1,mF=1〉−
E|F=1,mF=0〉 and E|F=1,mF=0〉 − E|F=1,mF=−1〉 differ by several kHz even at a modest

field of a few Gauss. This has strong implications when coupling the F = 1 manifold.

If the Rabi frequency of the coupling field is less than this difference, the coupling can

only be resonant for one of the energy splittings at any one time, and hence the three

level system mF = +1, 0,−1 is reduced to a two level system.

3.5.1 Magnetic trapping

In our experiments we can assume the linear form of the Zeeman energy

U(r)|F,mF 〉 = µBgFmFB(r), (3.59)
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3.5 Atoms in an external magnetic field

where we have replaced Bz by B = |B|, since for sufficiently large magnetic fields the

dipole of the atom will adiabatically follow the field direction. If we allow the magnetic

field to vary spatially the atom will experience a force

F(r) = −∇U(r) = −µBgFmF∇B. (3.60)

From (3.59) it follows that a local field minimum would act as a trap for low-field

seeking states with gFmF > 0. For 87Rb, the Landé factors for the ground state

are gF=1 = −1/2 and gF=2 = 1/2, and hence the magnetically trappable states are

|F,mF 〉 = |1,−1〉 , |2, 2〉, and |2, 1〉.
Once in a magnetic trap it is possible to cool the gas down to degeneracy using

microwave or RF fields to selectively transfer the most energetic atoms to untrapped

states. The advantage of using magnetic traps is that firstly they can be very deep,

allowing them to efficiently collect the atoms at the end of the laser cooling stage.

Secondly the lifetime in such traps can be extremely long, limited only by collisions

with the residual background gas. This is particularly useful in our setup when we need

to sympathetically cool 39K with 87Rb, which has a long thermalisation time due to the

small inter-species scattering length, aK−Rb. Finally evaporative cooling in a magnetic

trap can be state and species selective, which again is utilised in the sympathetic cooling

of 39K to only remove 87Rb atoms and maximise the phase space density of 39K.

Quadrupole trap

In our experiment, following laser cooling in the MOT and molasses stages, the atoms

are transferred to a quadrupole trap produced by a pair of opposed Helmholtz coils as

shown in figure 3.12(a). Defining the axis of symmetry as the z direction, using the

Maxwell relation ∇ ·B = 0, the magnetic field near the origin is given by

B = B′(x, y,−2z). (3.61)

The strength of the field varies linearly with distance from the origin, and due to the

symmetry of the trap the gradient is twice as strong along the vertical direction than

along the radial. The full field calculation is shown in figure 3.12(b), and shows that

the trap is only a local minimum with the trap depth given by the difference between

the minimum field at the origin and the maximum field along the radial direction. The

field lines shown in figure 3.12(a) illustrate that the field direction is the same as that

required for the MOT stage, hence we use the same coils for both roles.

In this experiment, the quadrupole coils are a pair of water-cooled copper coils in

anti-Helmholtz configuration mounted on a track mount, which is used to translate

them between the MOT chamber and the science cell. Following optical pumping, the

trap is loaded by jumping the field to 40 G/cm along the strong axis, and then ramp-

ing the field over 50 ms to its maximum value of 160 G/cm. This tightly confines the
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3.5 Atoms in an external magnetic field

Figure 3.12: Quadrupole trap: (a) Direction of the magnetic field in the xz plane created by
a pair of coils in Anti-Helmholtz configuration. The vertical spacing between the coils is chosen
equal to the diameter of the coils. (b) Potential created in the xz plane by the quadrupole trap.

atoms, allowing the track to move the coils to the science cell, carrying the atom cloud

with it down the narrow channel and into the lower pressure environment.

The main disadvantage of the quadrupole trap is that the magnetic field vanishes

at the origin. In this region of very low field, states with different mF become degen-

erate and the magnetic field no longer defines the quantisation axis for the atoms to

adiabatically follow. This allows non-adiabatic transfers between different mF states to

occur, and if these new states are not magnetically trapped they are lost from the sys-

tem, reducing the cloud lifetime. Such spin flips are called Majorana spin flips [63] and

cause trap losses and heating. Ultimately this process dictates that cooling to quantum

degeneracy in a quadrupole trap alone is not possible [64]. Several solutions to this

problem have been found, however the solution used in our experiment is to trans-

form the quadrupole trap into a QUIC (Quadrupole-Ioffe configuration) trap where the

magnetic minimum is offset from zero.

QUIC trap

To overcome the problem of Majorana spin flips several solutions were implemented in

our system and used to cool to degeneracy. These include:

Optically plugged quadrupole The magnetic zero in the quadrupole trap is over-

lapped with a blue-detuned repulsive optical potential which acts to “plug” the

hole. This method was first used successfully at MIT in 1995 [11].
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Figure 3.13: QUIC trap: This illustrates the configuration of the quadrupole, Ioffe and anti-
bias coils in the QUIC trap relative to the science cell. The arrows on the coils indicate the
direction of current.

Time-averaged orbiting potential (TOP) trap The quadrupole field is superim-

posed with a rotating, spatially uniform magnetic field which causes the magnetic

zero to move out from the original origin and orbit about it. If the frequency of

the rotation is chosen to be slow enough for adiabatic following to prevent tran-

sitions between mF states, but faster than the motion of the atoms, the atoms

move in the effective time-averaged potential of the instantaneous potential: a

harmonic trap with non-zero field everywhere [10, 65].

Optical dimple hybrid trap A red-detuned attractive optical potential is positioned

approximately a beam waist from the quadrupole magnetic zero. At very low tem-

peratures close to degeneracy the optical “dimple” dominates over the magnetic

field minimum and the coldest atoms are held away from the magnetic zero, and

therefore protected from spin flips [66].

Of these three the optical dimple trap was the optimal method for 87Rb, producing

condensates of 5 × 105 atoms with less than 10 s of evaporation. Unfortunately for

much of the time during this work it was necessary to optimise the experiment for

production of 39K condensates, which requires very long evaporation sweeps due to the

relatively small K-Rb interspecies scattering length of aK−Rb ' 28a0 [67], compared to

aRb ' 99a0 [68] for 87Rb. The solution which worked best for sympathetic cooling of
39K was found to be to evaporate in a QUIC trap, and as a result the same method is
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3.6 Evaporative cooling

used to produce 87Rb BECs.

The QUIC trap is a relatively simple Ioffe-Pritchard type trap first implemented in

[69], where the quadrupole field is modified to offset the trap minimum to a positive

value of magnetic field, and convert the trapping potential from linear to harmonic.

This QUIC trap is formed by adding the field from a single coil, known as the Ioffe coil,

orientated perpendicular to the quadrupole coils, which produces the offset harmonic

potential. An additional uniform field known as the anti-bias field opposes the field

generated by the Ioffe coil and provides greater control in the position of the magnetic

field minimum along the direction of the Ioffe coil. The orientation of these coils is

illustrated in figure 3.13. For full details of the setup, potential, and loading procedure

of our QUIC trap see [45, 46]. The main disadvantage of the QUIC trap is that the

confinement along the direction of the Ioffe coil is quite weak, and as a result evaporation

sweeps must be slow to allow thermalisation.

3.6 Evaporative cooling

The phase space densities achieved at the end of laser cooling are still typically many

orders of magnitude below unity and hence degeneracy. As a result, evaporative cool-

ing is a necessary stage of nearly all ultracold experiments, and allows one to achieve

arbitrarily low temperatures. The basic principle of evaporative cooling is to selectively

remove only the highest energy atoms in a cloud and then allow the remaining sample

to rethermalise at a lower equilibrium temperature. By repeatedly truncating the ther-

mal distribution in this way the temperature can be lowered indefinitely, limited only

by the discrete particle number. Provided the evaporation is efficient in removing only

the most energetic atoms and background loses and heating are limited, the atom loss

and temperature reduction result in a net increase in phase space density.

The first evaporative cooling stage is done in a magnetic trap once the atoms

have been transported to the science cell. This itself is split into two steps: an initial

evaporative sweep in the quadrupole trap, followed by a slower sweep in the QUIC

trap. The principles for both steps are the same. The energy levels of the F = 1 and

F = 2 magnetic sublevels are shown in figure 3.14 as a function of field strength which,

for a quadrupole trap, is proportional to distance from the magnetic zero. We apply a

microwave (MW) field of a frequency ∆MW greater than the hyperfine splitting, ωHF ,

indicated by the green arrow. For an atom to move into resonance with the MW field

it must move away from the origin to a region of higher field. If we choose ∆MW to be

sufficiently large, only the most energetic atoms will reach this region, at which point

they will undergo a magnetic dipole transition to the untrapped |1, 1〉 state and are

lost.

We therefore have a method for selectively ejecting the high energy atoms from the

trap, hence by gradually sweeping the MW frequency downwards we can evaporatively
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Figure 3.14: Evaporation in a magnetic trap: The left figure shows the hyperfine energy levels
as a function of magnetic field. The F = 1 and F = 2 manifolds are coupled by a microwave
field (green arrow) detuned ∆MW above the zero-field hyperfine splitting, ωHF . The grey lines
indicate the F = 1 manifold shifted by the microwave photon energy, hence we see the first
states coupled are |2, 2〉 and |1, 1〉 plus a photon. The microwave dressed states are shown in
the upper right panel. The F = 2 magnetic sublevels are coupled by an RF field (blue arrow)
of frequency ωRF . Here we assume the field is low and the states are all equally spaced such
that the RF couples all five sublevels at once. The RF dressed version of the F = 2 manifold
is shown in the bottom right.

cool the cloud, with the final temperature set by the final MW frequency. The same

effect can be achieved by applying a radio-frequency (RF) field of frequency ωRF . This

drives ∆mF = 1 transitions between the different mF levels of the F = 2 manifold

until ultimately the atoms transfer to the untrapped mF = 0, and the anti-trapped

mF = −1,−2 states and are lost from the trap. To create an equivalent trap depth to

the case of MW, the RF frequency is given by ωRF = ∆MW /3. The main advantage

of using microwaves is that it allows selective cooling of 87Rb only, which is used to

sympathetically cool 39K.

A more informative picture can be obtained using the dressed state formalism de-

veloped in Section 3.2.1 [70]. If we label states as |F,mF ;n〉, which is the |F,mF 〉 state

plus n photons, the |1,mF ; 1〉 manifold is indicated by the grey levels in figure 3.14.

We therefore see that the evaporation point is set by where microwaves first couple

the |2, 2〉 and |1, 1; 1〉 states. At higher fields it is clear that additional couplings will
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occur, which can lead to production of atoms in the |2, 1〉 state. The Hamiltonian of

the coupled |2, 2〉 and |1, 1; 1〉 states in a magnetic field is an intuitive modification of

that in (3.14):

Ĥ =
~
2

[
∆MW − µBB(r) Ω

Ω −∆MW + 2µBB(r)

]
, (3.62)

where we have used that gF = 1/2 (−1/2) for the F = 2 (F = 1) states. This is

diagonalised to obtain the dressed state eigenvalues which are plotted in figure 3.14 as a

function of distance from the trap zero. The ground state forms a trap, whose depth can

be reduced by reducing the MW frequency, or increasing the field gradient. Provided

the atoms cross the edge sufficiently slowly they remain in the dressed ground state

and are transferred to the |1, 1〉 state and are lost. Atoms which cross the boundary

too quickly can be transferred to the upper band, and can then be trapped at the

cloud’s edge. To prevent this, the coupling strength between the states, Ω, must be

sufficient for the adiabatic crossing criteria (3.35) to apply. We identify the detuning

as ∆ = (3µBB
′x/2~), where B′ is the field gradient and x is the position in the trap.

Estimating the typical atom velocity as v =
√
kBT/m the adiabatic condition is given

as

Ω� Ω0 =

√
3µBB′

2π2~

(
kBT

m

)1/4

. (3.63)

For typical parameters at the start of the quadrupole evaporation, this gives a value

of Ω0 ∼ 7 kHz. If this is satisfied, atoms crossing the resonance point will leave

the trap. If one evaporates with insufficient power, hot atoms can oscillate past the

resonance point several times before being ejected, causing heating of the remaining

cloud and inefficient evaporation. This process is extended to calculate the RF dressed

F = 2 manifold which is also shown in figure 3.14. The relevant states coupled are the

|2, 2〉 , |2, 1; 1〉 , |2, 0; 2〉 , |2,−1; 3〉 and |2,−2; 4〉. An atom adiabatically following the

lowest band transitions from the trapped |2, 2〉 state to the anti-trapped |2,−2〉 state.

Because this is a higher order process, the necessary RF power for adiabatic following

is higher than that required for MW, however we note that atoms transferring to the

second and third band will still be lost from the trap. The requirement for higher power

follows somewhat intuitively from observing the reduced level spacing present in the

RF dressed states for the same Ω.

Following magnetic transport to the low pressure science cell we use a linear 2 s

MW forced evaporation sweep in the quadrupole trap. The trap is then transformed

into the QUIC trap and we then employ a 32 s forced evaporation using an exponential

frequency sweep. Once this concludes we typically have about 4 × 107 atoms at a

temperature of about 3 µK [44]. This is sufficiently cold to be loaded into an all optical

dipole trap, where the final evaporation is done to achieve condensation. We now briefly

describe the microwave and RF systems used in the experiment, since these are used

extensively to perform state transfers which are integral to studying persistent currents.
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Figure 3.15: Microwave system: (a) The generator used for forced evaporation is the Agilent
N5183A MXG function generator. The secondary generator (Agilent/HP 83622A) is used for
|2, 1〉 clean up and state manipulation. Both can output a maximum of 14 dBm and are
combined using a power combiner. This is then passed through an RF switch and a custom
made 28 dB amplifier before going to the microwave antenna. (b) Custom made helix antenna
designed by I. Gotlibovych [71].

3.6.1 Microwave system

The microwave setup was designed by Igor Gotlibovych for a master’s project and

is detailed in [71]. Figure 3.15 (a) illustrates the basic configuration. The system is

optimised to radiate the maximum power at a frequency equal to that of the hyperfine

splitting, 6.8 GHz. The signal for forced evaporative cooling is derived from a function

generator1 which is then passed through a custom made amplifier built by Microwave

Amplifiers Ltd. to give a maximum output power at the antenna of 37 dBm= 5 W.

A secondary synthesizer2 is power coupled3 to this transmission line and provides the

option to perform |2, 1〉 clean up sweeps during evaporation, and is used to perform

state manipulations of the BEC. The output of both generators is controlled by an

external TTL-controlled RF switch4 which provides timing resolution of 1 µs, limited

by the resolution of our sequence control software.

The antenna is illustrated in figure 3.15 (b) and uses a helix design to try and

increase directionality of the radiated power. The first 1/4 of the helix turn closest

to the ground plate is deformed to impedance match the antenna with the cable and

reduce reflections. The antenna radiates circularly polarised light, with a directionality,

D = 4.5. The directionality is defined as the maximum intensity over the average

1Agilent N5183A MXG
2Agilent/HP 83622A
3Mini-Circuits ZX10-2-71-S+
4Mini-Circuits ZYSWA-2-50-DR
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3.6 Evaporative cooling

intensity,

I(r, θ, φ) =
P

4πr2
G(θ, φ) (3.64)

D = maxθ,φG(θ, φ), (3.65)

where P is the total power, and r is the distance from the antenna. From this the

maximum possible Rabi frequency can be calculated.

Electric dipole transitions between |F,mF 〉 states are forbidden, so the relevant

matrix elements are magnetic dipole transitions. The coupling is given by

~Ωij = 〈Ψi|µ ·B |Ψj〉 (3.66)

with

µ = µB(gI Î + gLL̂ + gSŜ). (3.67)

Using L = 0 and gI � gS , we simply need to compute matrix elements of the spin

operator. Using Clebsch-Gordan coefficients we can decompose the hyperfine states

into eigenstates of the spin operator

|F,mF 〉 =
∑

mI ,mS

CmI ,mS |I,mI ;S,mS〉 , (3.68)

where CmI ,ms are the Clebsch-Gordan coefficients. We define the spin operator as

Ŝ = (σ̂x, σ̂y, σ̂z)/2, where σx,y,z are the appropriate Pauli spin matrices. The magnetic

dipole moment between two states, (1) and (2), is then given by〈
F (1),mF (1)

∣∣∣µ ∣∣∣F (2),mF (2)

〉
= gSµB

∑
δm

I(1) ,mI(2)
C(1)C(2)

〈
S(1),mS(1)

∣∣∣ Ŝ ∣∣∣S(2),mS(2)

〉
(3.69)

Relevant non-zero magnetic dipole matrix elements are listed below

Element Value

〈2, 2|µ |2, 1〉 1
2µB(1,−i, 0)T

〈2, 1|µ |2, 0〉
√

6
4 µB(1,−i, 0)T

〈2, 2|µ |1, 1〉
√

3
2 µB(1,−i, 0)T

〈1, 1|µ |1, 0〉 − 1
2
√

2
µB(1,−i, 0)T

Using the relation between intensity and magnetic field, I = B2c/2µ0, the maximum

Rabi frequency for the |2, 2〉 → |1, 1〉 transition is then given by

~Ω|2,2〉→|1,1〉 =

√
3

2
µB

√
µ0PD

2πr2c
≈ 14 kHz, (3.70)
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3.6 Evaporative cooling

Figure 3.16: RF system: The waveform generator used to produce the RF signal can output
frequencies up to 30 MHz with a power of up to 24 dBm. The usable power is restricted to 7
dBm so as to prevent damaging the amplifier. The output state is controlled by a switch which
provides time control of pulse times required for Rabi flopping. The RF signal is boosted by 30
dB by an amplifier before going to a single loop antenna, giving a maximum power of 36 dBm
(4 W).

where we assume a distance r = 10 cm. This is an upper limit on the attainable

Rabi frequency since we have neglected reflections at the antenna due to unmatched

impedances which will reduce the useable power. Comparison with (3.65) suggests this

Rabi frequency is sufficient for evaporative cooling.

3.6.2 RF system

The RF system is no longer used for evaporation, but is still used to perform state

transfers between magnetic sublevels. The RF setup is illustrated in figure 3.16. The

waveform is produced by a 30 MHz waveform generator1. To achieve short bursts

(∼ 100 µs) required for Rabi flopping, the output of the generator is controlled by an

external TTL-controlled RF switch2 which provides timing resolution of 1 µs, limited

by the resolution of our sequence control software. This signal is amplified by 30 dBm

using a broadband RF amplifier3 and then sent to the antenna. The maximum power

is limited to 36 dBm (4 W) due to the threshold of the amplifier.

The antenna is a single copper wire loop of radius r = 18 mm with wire radius

a = 0.5 mm, mounted horizontally less than z = 20 mm directly above the atoms. To

estimate the magnetic field at the atoms and hence the Rabi frequency we first calculate

the impedance of the coil. Magnetic state transfers are typically done in a field of 10 G,

corresponding to an RF frequency of about 7 MHz. At this frequency the wavelength

of the radiation is large compared to the dimensions of the experiment, justifying the

use of magneto-static methods to calculate the field. The current distribution across

the wire is mostly confined to the surface with a skin depth of

δ =

√
2ρ

ωµ0
, (3.71)

1Agilent, 33521A
2Mini-Circuits ZYSWA-2-50-DR
3Delta RF Technology, LA2-1-525-30
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3.7 Evaporative cooling

where ρ is the conductivity, which for copper is ρ = 1.68 × 10−8 Ωm. This gives a

typical skin depth of δ = 24 µm. The Ohmic resistance, R, can be easily calculated,

and the inductance of the coil, L, can be found using standard formulae [72]

R =
rρ

aδ
(3.72)

L = µ0r

[
ln

(
8r

a

)
− 2

]
. (3.73)

For our RF coil and typical operating frequency we obtain ZR = R = 0.025 Ω and

|ZL| = |iωL| = 3.64 Ω, giving a total impedance of Zloop = ZR + ZL. The antenna is

connected to a coaxial cable of impedance Z0 = 50 Ω. If the waveguide carries a signal

of peak voltage Vin towards the antenna, the impedance mismatch will cause reflections

and therefore the transmitted voltage is given by

Vloop =
2Zloop

Zloop + Z0
Vin (3.74)

giving a current in the antenna of

Iloop =
Vloop

Zloop
=

2Vin

Zloop + Z0
. (3.75)

The amplitude of the magnetic field at the atoms can be found using the standard

formula for the on axis field from a current loop

B = µ0|Iloop|
r2

(r2 + z2)3/2
. (3.76)

Using the relation Vin =
√

2PinZ0, the relevant Rabi frequencies at 7 MHz are

~Ω|2,2〉→|2,1〉 =
1

2
µBB ≈ 58 kHz

√
Pin

1 W
, (3.77)

~Ω|1,1〉→|1,0〉 =
1

2
√

2
µBB ≈ 41 kHz

√
Pin

1 W
. (3.78)

At such low frequencies the inductive impedance of the coil is sufficiently low that

very high Rabi frequencies are possible. Typically we run the waveform generator

well below its maximum power, producing a Rabi frequency of approximately 5 kHz,

corresponding to an input power at the antenna of approximately 12 dBm (16 mW).

For higher frequency applications, where the inductance of the loop becomes significant,

the output power can be enhanced by insertion of a capacitor in series. By tuning the

value of this capacitor such that (ωC)−1 = ωLloop, the reactance of the loop can be

canceled to increase the power output. Due to its significance in MRI experiments,

extensive literature exists on RF coil design for both transmission and pick-up [73].
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3.7 Optical dipole trap

Figure 3.17: Crossed optical dipole trap: 1070 nm laser light from a fibre laser is passed
through an AOM and focused down onto the atoms. The light is recycled in a bow-tie config-
uration and a second beam is focused onto the atoms, orthogonal to the first beam, producing
a crossed dipole trap which confines the atoms in all three dimensions. The power of the trap
is stabilised by picking off a weak reflection towards a photodiode, providing input for a PID
which controls the AOM efficiency to attain the desired trap power.

3.7 Optical dipole trap

Following evaporative cooling in the QUIC trap, the atoms are transferred to an all op-

tical dipole trap (ODT) illustrated in figure 3.17. The trap is formed using red-detuned

1070 nm laser light from a 10 W linearly polarised ytterbium fibre laser1. The linewidth

of the laser is 1.2 nm, corresponding to a coherence length of only ∆x ≈ λ2/∆λ ≈ 0.8

mm. This short coherence length ensures no interference effects which could modify

the trapping potential. The crossed trap is constructed using a bow-tie configuration,

where the light is focused onto the atoms and then recycled to form a second, focused,

orthogonal beam. This provides additional trap depth and confinement along the di-

rection of propagation of the first beam.

It is important to stabilise the beam power to prevent long-term drifts in trap depth

and high frequency modulations which can cause additional heating. To achieve this

the beam is passed through an AOM2 and the first diffraction order is used to form the

1IPG Photonics YLM-10-LP-SC
2Crystal Technology 3110-197
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3.8 |F = 1,mF = 1〉 state preparation

trap. Following the bow-tie configuration the laser is sent to a beam dump, but before

this a glass slide picks off a weak reflection towards a monitor photodiode. The voltage

signal obtained from the photodiode is compared with a set voltage generated by the

control software using a PID controller (Proportional-Integral-Derivative controller).

The PID outputs an error signal which suitably attenuates the AOM driving signal

to increase or decrease the AOM efficiency to achieve the desired trap power. This

AOM-PID setup is used on several more occasions in this experiment to stabilise beam

powers.

For such far-detuned trapping light the expressions for the dipole potential and scat-

tering rate derived in (3.42) and (3.43) respectively using the rotating-wave-approximation

are no longer accurate. Instead, a weakly perturbative method can be used to derive the

following expressions, relevant in the case of large detunings and negligible saturation

[58]:

Udip(r) = −3πc2

2ω3
eg

(
Γ

ωeg − ω
+

Γ

ωeg + ω

)
I(r), (3.79)

Rsc(r) =
3πc2

2~ω3
eg

(
ω

ωeg

)3( Γ

ωeg − ω
+

Γ

ωeg + ω

)2

I(r). (3.80)

In the limit of large detuning the optical dipole force dominates over the scattering

force. While Udip scales as I/∆, Rsc scales as I/∆2, hence far detuned optical traps

benefit from reduced scattering rates and heating.

The ODT is loaded by linearly ramping the beam power up to 6.8 W, corresponding

to a trap depth of ∼ 35 µK. The QUIC trap is then overlapped with the ODT and

abruptly switched off, achieving transfer efficiency of ∼ 60% with a temperature of

≈ 6 µK. The antibias field remains on at a fixed field of approximately 3 G. The final

evaporative cooling to degeneracy is performed in the ODT by gradually reducing the

beam power and trap depth over 6 s. The final temperature and condensate fraction

are controlled by choosing the PID voltage and correspondingly the beam power. With

this protocol pure BECs of 87Rb can be achieved with up to 8 × 105 atoms, however

when the system is optimised for production of 39K BECs, the 87Rb BEC atom number

is typically about half this value.

3.8 |F = 1,mF = 1〉 state preparation

After cooling to BEC in the |F = 2,mF = 2〉 state we transfer the atoms to the

|F = 1,mF = 1〉 state while holding in the ODT. The original purpose of this was to

reduce the number of magnetic sublevels from five to three, and hence simplify the

system for coupling the different mF states. Another advantage of changing states is

an observed increase in the BEC lifetime. Due to a reduced three-body recombination

rate the lifetime of the |1, 1〉 state is found to be slightly longer than that of the |2, 2〉
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3.9 |F = 1,mF = 1〉 state preparation

Figure 3.18: Adiabatic state transfer |2, 2〉 → |1, 1〉: Plotted are the dressed state energy
levels as a function of external bias field. The bias field is swept from 3.12 G→ 3.48 G in 100
ms in the presence of a microwave field of Ω ≈ 13 kHz which causes adiabatic following of
the lowest band. This transfers the atoms from the initial |2, 2〉 state to the |1, 1〉 state with
95% efficiency. The upper insets show 18 ms time-of-flight absorption images of the BEC in
the presence of a vertical Stern-Gerlach gradient to spatially separate the different magnetic
sublevels.

state. For the three F = 1 sublevels, the lifetimes are found to be approximately equal,

while conversely the lifetime of the |2, 1〉 state is observed to be considerably shorter

than that of |2, 2〉, and the |2, 0〉 state lives shorter still. While the extended lifetime

of the stretched state can be understood as the absence of spin-changing collisions, the

discrepancy between F = 2 and F = 1 states is less clear. Although not understood,

nevertheless we use this feature to our advantage by operating in the F = 1 manifold

which provides a long-lived basis of states.

This state transfer is achieved using an adiabatic Landau-Zeener sweep illustrated in

figure 3.18. With the antibias field providing a uniform field of 3.12 G, an off-resonant

microwave field is applied at fixed frequency 6841.98 MHz and Rabi frequency 13 kHz.

The antibias field is then swept across resonance by 0.36 G in 100 ms before removing

the microwave field. The efficiency of this transfer is detected by spatially splitting the

two states in time-of-flight by applying a vertical magnetic gradient. Typical transfer

efficiency is about 95%. The remaining atoms in the |2, 2〉 state are removed by a short

(10 µs) resonant pulse of imaging light which scatters the |2, 2〉 atoms out of the trap,

but is far detuned for the |1, 1〉 state.
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3.9 Absorption imaging

3.9 Absorption imaging

Our experiment uses absorption imaging to extract information about the density pro-

file, atom number, and temperature of our atoms. Absorption imaging simply relies on

illuminating the atoms with a laser pulse and measuring the spatial attenuation of the

beam profile, which relates directly to the density profile of the atom cloud. This is

done by imaging the shadow cast by the atoms onto a CCD camera.

To calculate the change in laser light due to the atom cloud, we use the relationship

between the refractive index, nref, and the complex polarizability, α

nref =
√

1 + nα/ε0 ≈ 1 +
nα

2ε0
, (3.81)

where n is the atomic density of the cloud. Since the polarizability is complex, this leads

to a complex refractive index with real and imaginary parts, nR and nI respectively:

nR = 1− n~cΓ
4Isat

2∆/Γ

1 + I/Isat + (2∆/Γ)2
(3.82)

nI =
n~cΓ
4Isat

1

1 + I/Isat + (2∆/Γ)2
. (3.83)

A constant refractive index will modify the propagation of a plane wave as follows:

E = E0e
i(kz−ωt) → E0e

i(nrefkz−ωt) = E0e
i(knRz−ωt)e−nIkz. The imaginary part leads to

a density-dependent exponential decay of the amplitude which is utilised in absorption

imaging. For non-zero detuning, the real part of the refractive index generates a density-

dependent phase shift of the incoming light. This phase shift can be used to image

transparent objects by phase-contrast imaging, where the information encoded in the

phase shift of the light is converted into intensity before detection. In this work, the

real part of nref leads to unwanted diffraction effects when imaging dense clouds in

trap. To remove this effect we can image on resonance (∆ = 0), where the phase shift

vanishes, however to reduce the optical density to within the dynamic range of our

imaging system, we only transfer a fraction of the atoms from the |1, 1〉 state to the

imageable |2, 2〉 state.

Absorption of photons leads to a rate of decay of intensity with propagation distance

given by
dI

dz
= −2nIkI = −nσI. (3.84)

From this we extract the scattering cross-section

σ =
σ0

1 + I/Isat + (2∆/Γ)2
, (3.85)

where

σ0 =
~Γω

2Isat
. (3.86)
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3.9 Absorption imaging

The same result can be obtained by equating the rate of decay of intensity, dI/dz, to the

rate of energy scattered from the cloud, ~ωRscn, and using the form of the scattering

rate in (3.29). In the limit of low intensity, the effect of saturation in σ can be neglected,

and equation (3.84) can be integrated to give the intensity after propagating a distance

z,

I(x, y) = I0(x, y) exp

[
−σ
∫ z

0
n(x, y, z′)dz′

]
≡ I0(x, y)e−D, (3.87)

where the optical density, D, is defined as

D(x, y) = σ

∫ z

0
n(x, y, z′)dz′ = − ln

(
I(x, y)

I0(x, y)

)
. (3.88)

Therefore by taking an image of the incident light with atoms to obtain I(x, y), and an

image without atoms to obtain I0(x, y), it is possible to calculate the optical density,

which is proportional to the column density along the line of sight. To account for any

stray light entering the camera, additional dark images are taken with no imaging light

and are subtracted from the atom shadow image and the imaging beam image. The

final optical density is then given by

D(x, y) = − ln

(
I(x, y)− Idark(x, y)

I0(x, y)− Idark(x, y)

)
. (3.89)

3.9.1 Imaging systems

Our experiment makes use of a horizontal and vertical imaging setup, both of which

were designed and tested by Alexandre Dareau using the OSLO optimisation package

and are detailed in his project report [74]. The horizontal direction is used to make

quantitative measures of atom number and temperature, whereas the majority of the

data taken on persistent currents is done using the vertical imaging system, along which

vortices are visible. In both instances the imaging bias field is in the horizontal plane

along the direction of the horizontal imaging. This bias field is the same used during

state transfers and hence is quite large at approximately 10 G.

Horizontal imaging Our horizontal objective is based on one proposed by Wolfgang

Alt [75]. The objective uses five commercially available 1” optics, the first four of

which are designed such that their own respective aberrations combine to cancel

one another out and the spherical aberrations introduced by the science cell wall.

The fifth lens is a diffraction limited achromatic doublet used to focus the image

onto the camera. This complete objective achieves a resolution of less than 2 µm

and a magnification of Mh = 2.78. The atoms are imaged with a broad beam

of σ+ polarised light which is resonant with the |2, 2〉 → |3, 3〉 cycling transition.

The steady state resonant cross-section (3.86) for σ+ polarised light is given by

[76]

σσ
+

0 =
3λ2

2π
. (3.90)
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Vertical imaging Our vertical objective is similar in spirit to the horizontal objective,

however the additional constraint of the quadrupole coils forces the lenses to be

spaced further apart. A custom meniscus is closely mounted near the science

cell to maximise the numerical aperture, and the subsequent optics used are 2”

in diameter to further increase light collection. This objective also achieves a

resolution of less than 2 µm and a magnification of Mv = 5.2. Due to design

constraints where the vertical direction is used for addressing the atoms with the

Raman beams, the vertical imaging light is π polarised with respect to the bias

field. As a result, during the imaging pulse, the atoms become distributed over a

range of mF states which makes calculation of the scattering cross-section more

complicated. Calculations in [76] and [77] show that the steady state saturation

intensity is given by Isat = 3.053 mW/cm2, giving a resonant cross-section of

σ0 = 0.55 σσ
+

0 . Typically we tend to calibrate the vertical imaging using the

horizontal imaging since the transition is much simpler.

The same type of camera1 is used for both imaging systems. This camera has a relatively

modest quantum efficiency of ∼ 28% and a pixel area of 6.45×6.45 µm2. For horizontal

imaging this gives an effective pixel size of 2.32 × 2.32 µm2, just above the resolution

limit, which is calibrated using the motion of the centre of mass of the cloud in free fall.

For vertical imaging in trap this gives an effective pixel size of 1.2×1.2 µm2, just under

the resolution limit, calibrated by comparing cloud sizes in both imaging systems. We

also calibrate the vertical imaging at the plane of 29 ms TOF, which is used extensively

for detecting angular momentum, which gives a larger pixel size of 1.42× 1.42 µm2.

Due to the relatively low efficiency of the camera, to achieve a high signal-to-noise

ratio we use quite high intensity and long imaging pulses such that each atom scatters

many photons. Our imaging pulses are typically 80 µs long with an intensity I/Isat ≈
0.3, which corresponds to scattering about 350 photons per atom. The disadvantage

of this is the high intensity leads to some saturation of the imaging transition, and the

scattering force during imaging can lead to a Doppler shift of resonance and an effective

detuning [45].

Stern-Gerlach

To image different magnetic states we apply a Stern-Gerlach magnetic gradient during

time of flight using the quadrupole coils. This exerts a state dependent force which

causes the different mF states to spatially separate as they fall. For vertical imaging

we apply a gradient of 11 G/cm, which due to the bias field predominantly splits the

states in the horizontal direction. The gradient is ramped off a few ms before imaging,

just leaving the imaging bias field on, so as not to create a spatially varying detuning.

For horizontal imaging we apply a gradient of 16 G/cm and a strong vertical field of 90

1PCO Pixelfly QE Double Shutter
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3.9 Absorption imaging

G. This splits the states in the vertical direction, and once again the fields are ramped

off a few ms before imaging.

3.9.2 Atom number calibration

As discussed in the previous section, various experimental factors will cause the true

scattering cross-section to differ from σ0, often causing an underestimate of atom num-

ber. Typical factors include imperfect polarisation, small detunings from resonance,

and in our case, saturation and acceleration of the atoms during imaging. For quanti-

tative studies of BEC this needs to rectified, and the scattering cross-section is scaled by

a ‘fudge-factor’, f = σ0/σ, to compensate for the discrepancy. The way this is done is

to note that while the atom number is altered by f , the temperature, which is extracted

from the width of the thermal distribution, is not. Since the BEC phase transition is a

function of both temperature and atom number, the onset of condensation can be used

to find the fudge factor as follows

fNtotal = N id
c + fN0, (3.91)

since for an ideal gas the thermal atom number saturates at the critical number given

by (2.16)

N id
c = 1.202

(
kBT

~ω0

)3

, (3.92)

where ω0 is the geometric mean of the trapping frequencies. The uncorrected total

number, Ntotal, and condensate number, N0, are found by fitting the absorption image,

and the critical number is calculated using the fitted temperature, thus allowing us

to find the fudge factor, f . As discussed in [16, 47] the effect of interactions leads to

non-saturation effects which modify (3.91) and need to be considered for an accurate

determination of f . For small condensates this can be suitably captured using Hartree-

Fock theory which gives the total atom number as

Ntotal = N0 +N id
c + 1.37N id

c

µ

kBT
, (3.93)

where the chemical potential, µ, is a function of the condensate number (2.44). The

fudge factor is then found by solving the equations

fNtotal = fN0 +N id
c + 1.37N id

c

µ

kBT
, (3.94)

with the chemical potential given by

µ =
~ω0

2

(
15fN0a

a0

)2/5

, (3.95)
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Figure 3.19: Convergence of saturation intensity and scattering cross-section with scattering
events: The evolution of the saturation intensity, Isat (red), and the on-resonance cross-section,
σ0 (blue), are shown as the expected populations change with absorption of σ+ polarised imag-
ing light and spontaneous emission. These are calculated for each of the three starting popu-
lation distributions obtained by repumping |1, 1〉, |1, 0〉, and |1,−1〉. The vertical axis is the
value of the parameters over their steady state values.

where a is the s-wave scattering length, and a0 is the harmonic oscillator length asso-

ciated with the mean trapping frequency. Higher order corrections are considered in

[48] by considering modification of the critical temperature due to interactions. For

our horizontal imaging system we observe a typical reduction in the cross-section by

a factor of f = 1.5 ± 0.3, consistent with that expected from our range of imaging

parameters.

3.9.3 Imaging the |F = 1〉 state

As described in Section 3.8, our experiments on persistent currents are performed in

the F = 1 states, whereas our imaging light is resonant for the F = 2 state. To image

the F = 1 state we quickly transfer the atoms to the F = 2 states just before the

imaging pulse. This can be done in two different ways.

1. The first is to flash a 10 µs pulse of π polarised repump light just before the

imaging pulse, after releasing the atoms from the trap. This transfers the atoms

into the F ′ = 2 state, and those that decay into the F = 2 manifold become dark

to the repump light and remain there. Since each atom should end up in a dark

state we are able to saturate the transition many times over and rapidly move the

population into the imaging state. This method will distribute the atoms across

several mF states, however due to the significant number of scattering events

during imaging, the atoms quickly reach their steady state populations and the

effective cross-section is only slightly affected by the starting distribution.
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To calculate this effect we use the appropriate branching ratios [78] to find the

steady state populations at the end of repumping

Transition Final populations mF = (−2,−1, 0, 1, 2)

|1, 1〉 → |2, 1〉 (0.01, 0.14, 0.36, 0.25, 0.23)

|1, 0〉 → |2, 0〉 (0.03, 0.42, 0.09, 0.42, 0.03)

|1,−1〉 → |2,−1〉 (0.23, 0.25, 0.36, 0.14, 0.01)

From these starting populations we now simulate absorption of σ+ polarised imag-

ing light and spontaneous emission back to the F = 2 magnetic sublevels. This

gives the expected population distribution as a function of scattering events, from

which the saturation intensity and hence the on-resonance cross-section can be

calculated. The result of this calculation is shown in figure 3.19, and shows that

for all starting populations, after about 10 scattering events the population is

almost entirely in the |2, 2〉 state and the cross-section is equal to that found for

the cycling transition (3.90). Since the imaging pulse involves about 350 scatter-

ing events, cycling the atoms into the steady state population distribution only

introduces a small correction to the effective cross-section. For typical imaging

parameters I/Isat = 1/3 and a pulse time of 80 µs, the effective cross-sections

are 0.995 σ0, 0.993 σ0, and 0.990 σ0 for imaging the mF = 1, 0, and −1 states

respectively. We can therefore be confident that we image all sublevels equally

and can also directly compare to the |2, 2〉 state. Similar corrections are found

when considering vertical imaging with π polarised imaging light.

2. The second method is to use a microwave π-pulse to flip the population from

|1,mF 〉 → |2,mF + 1〉. The disadvantage of this method is that it requires very

stable magnetic fields, and hence cannot be used in conjunction with a Stern-

Gerlach gradient used to spatially separate the magnetic states. The pulse is also

only able to transfer one mF state to an imageable state, however this can be

used to our advantage to measure the spatial distribution of each mF state in

situ. Another advantage is that we need not transfer all the population to the

imaging state, providing a simple, non-invasive way to reduce the optical density

[79].

The use of absorption imaging for quantitative analysis is typically restricted to

samples with an optical density of less than 3. For optical densities above this,

the image is said to be “blacked out” and the level of transmitted light is too

low for reliable inference of optical densities. The cross-section can be reduced by

detuning the imaging light from resonance, however this can lead to significant

refraction of the imaging light beyond the aperture of the imaging system. This

can affect the absolute density measurement, and importantly for in situ images

where the density varies on small length scales, it can appear as false absorption

signals in the relative density [80]. Partial transfer absorption imaging simply
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involves only transferring a fraction of the atoms to the |2, 2〉 imageable state.

This uniformly reduces the optical density across the entire sample, bringing it

within the dynamic range of our setup and providing an accurate representation

of the density distribution. Since the imaging light does not affect the remaining

atoms this can also be used to take several pictures of the atoms in a single

sequence.

3.10 Conclusion

In conclusion we have outlined the theory and experimental stages used to produce our
87Rb BEC held in an all optical dipole trap. The theory and experimental apparatus

relevant to later chapters has been covered in more detail, in particular that of Rabi

oscillations, optical trapping, and the creation of dressed states by atom-light coupling.

The experimental protocol described in this chapter provides the starting point for all

our experiments on persistent currents, which are described in the chapters to follow.
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Chapter 4

Preparation and detection of persistent

currents

In the previous chapter we covered our experimental sequence to create a BEC in the

|1, 1〉 state held in a crossed ODT (CDT). We now explain how we load this BEC into

an optical ring trap to create a multiply-connected toroidal BEC, and then impart

angular momentum to the BEC to create a superfluid persistent current in analogy to

those created in superconducting [81–85] and superfluid liquid helium [27, 39, 86–88]

experiments. Superfluid flow of a BEC in a multiply-connected ring geometry is the

archetypal metastable many-body state. As discussed in Section 2.4.3, the phase of the

macroscopic BEC wavefunction must wind around the ring by an integer multiple of

2π, corresponding to the charge q of a vortex trapped inside the ring. Different q states

are topologically distinct and therefore transitions between them involve a macroscopic

transformation of the BEC wavefunction and so are energetically unfavourable. As a

result even in a stationary trap where the ground state is q = 0, a q 6= 0 persistent

current can be extremely long-lived since there may be no energetically accessible decay

channel. This chapter details how we prepare and detect such persistent currents, the

stability and decay of which are studied in the subsequent chapters.

The outline of this chapter is as follows. Firstly we detail past ring trap experiments,

describing alternate methods for their creation, previous studies on persistent currents,

and applications of BECs in such geometries. The next section explains how we form

our optical ring trap by intersecting a sheet beam with a tube-like Laguerre-Gauss

(LG) beam. This includes the methods used to form the LG beam and how we correct

for abberations in the LG beam phase profile. The next two sections describe how we

then impart angular momentum to the BEC, setting up the persistent current, and how

we detect the state of this persistent current following its creation. The final section

illustrates the significance of the multiply-connected geometry by studying the vortex

dynamics when we remove the ring trap, transforming to a simply-connected trap.
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4.1 Previous ring trap experiments

4.1 Previous ring trap experiments

Atomic BECs trapped in a ring geometry are attractive for creating stable states of non-

zero circulation. As discussed in Section 2.4.3, rotation of a BEC requires a multiply-

connected geometry which introduces vorticity into the system. Such vortices are fun-

damentally unstable and are observed to break apart and migrate towards regions of

low density at the edge of the cloud [31, 32, 89], reducing the angular momentum of

the system. In Section 4.5 we discuss our own observations of dynamically unstable

multiply charged vortices. A ring geometry allows the study of truly stable persistent

currents by pinning the vorticity to the zero density region in the centre of the ring

[90, 91]. As discussed in chapter 5, the ring geometry introduces low energy states,

corresponding to placing vortices inside the ring, separated by energy barriers which

prevent a continuous deformation of the BEC wavefunction and loss of angular mo-

mentum. Ring shaped BECs also have several other promising applications such as

interferometry, atomtronics, and fundamental studies of BECs with periodic boundary

conditions.

4.1.1 Previous ring traps

Several schemes have been implemented to create multiply-connected geometries for

ultracold atoms. These can be broadly divided into three types: magnetic, RF dressing,

and optical. The scale of these traps are generally divided into smaller traps where the

quantum coherence extends all around the ring, suitable for persistent current studies

and atomtronics, and larger traps for matter-wave interferometry.

Magnetic

Various current structures have been generated for achieving large area ring

waveguides based on dc magnetic fields to create ring traps suitable for inter-

ferometry [92, 93]. The disadvantage of such traps is the existence of field zeros

which lead to losses by Majorana spin-flips. This can be negated by using time-

averaged magnetic traps such as in [94] which reported the first BEC loaded in a

circular waveguide. The disadvantage of such traps for our studies is their large

scale, of the order of several mm. The low mean field of a BEC occupying such a

large trap makes it unfeasible to create a continuously connected BEC, unbroken

by residual azimuthal roughness.

RF dressing

Modifications to these magnetic traps have been proposed which use RF fields to

dress the atoms and create time-averaged ring potentials [95, 96]. Such schemes

involve using RF fields to create a dressed band with a minima isosurface at

a given magnetic field value. The position of this surface can then be moved

to create a time-averaged ring potential, the parameters of which can be modi-
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4.1 Previous ring trap experiments

fied by changing the RF frequency. Such traps are inherently flexible, and can

produce small ring traps suitable for superflow studies. Such a trap was recently

demonstrated for a BEC in [97]. The disadvantage of this solution is the trapping

potential is state dependent.

Optical

Several experiments (including this one) make use of optical forces to create ring

traps. The clear advantage of this is the trap is equal for different magnetic

states, and the creation of small ring geometries is easily achieved. The first such

traps used a repulsive blue-detuned beam aligned along the symmetry axis of

a magnetic trap to create a multiply-connected geometry. This was done with

both a quadrupole magnetic trap [98] and a TOP magnetic trap [99]. This setup

is limited by heating and losses due to drifts in the relative alignment of the

magnetic field and the plug beam.

The experiment of Ryu et al. [99] evolved into an all optical trap which made

use of an intersecting sheet beam and tube-like Laguerre-Gauss beam [100] (see

Section 4.2). This setup is very similar to ours, and both experiments [99] and

[100] were also used to study persistent currents. As such, in chapter 5 we will

directly compare our finding to those in [99, 100]. Other all optical ring traps

have used time-averaged painted potentials [101, 102]. These experiments use a

two-directional AOM to deflect a beam and trace out the trapping potential. This

is done with a kHz refresh rate, allowing one to create an arbitrary time-averaged

potential. Such traps show great promise for creation of dynamic atomtronic

circuits.

4.1.2 Applications of ring BECs

While numerous novel proposals have been developed which make use of multiply-

connected BECs [103, 104], we will limit ourselves to briefly explaining those applica-

tions which have been experimentally realised.

Persistent current studies

Persistent flow in a BEC is a striking demonstration of superfluid behaviour and

facilitates studies into critical velocities and the connection between superfluidity

and Bose condensation, which are still not fully understood. The only experiments

to demonstrate persistent flow in a BEC are those of the NIST group [99, 100, 102],

and those presented in this work [14, 15]. The NIST experiments demonstrated

long-lived superflow of up to 40 s, and were able to theorise a possible decay

mechanism. The results of these experiments will be contrasted with our own

findings in chapter 5.

Atom interferometry

Atom interferometry is performed by coherently splitting an atom cloud into two
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parts which then travel spatially different paths before recombining and interfer-

ing. If the parameter of interest acts differently on the two paths, a relative phase

difference will accumulate which is read out upon interference as a population dif-

ference. Such experiments have allowed precision measurements of various quan-

tities, including rotation [105–107], acceleration [108], magnetic gradients [109],

and fundamental constants [110]. Interferometric detection of rotation makes use

of the Sagnac effect which states that two interfering propagation paths enclosing

an area A will experience a relative phase shift of ∆φ = 4π
λvΩ · A, where λ is

the particle wavelength, which for a massive particle is the de Broglie wavelength

λdB = h/mv, v is the velocity of the particle, and Ω is the rotation of the external

system. As a result, the inherent sensitivity of a matter-wave gyroscope exceeds

that of a photon-based system of equal area by a factor of mcλ
h ∼ 1010, where

here λ is the typical photon wavelength.

Sagnac interferometry in a ring trap is attractive for several reasons: (i) for a com-

plete loop of the trap the two paths are identical (apart from their rotation sense)

and have common-mode rejection, and (ii) the area, A, can be trivially extended

by allowing multiple revolutions before readout. Such a proposal is outlined in

[111] for a two component BEC. This makes use of a π pulse at half the integration

time termed an echo pulse, which cancels phase accumulation due to atom-atom

interactions. Recently a proof of principle rotation sensor was demonstrated in

[112] which uses interference of collective excitations in a toroidal-shaped BEC.

Atomtronics

Atomtronics focuses on the creation of atom analogs of electronic materials, de-

vices, and circuits. The analogy between a strongly interacting Bose gas in a

lattice potential and electrons in a solid-state crystal, has led to the proposal of

P-type and N-type material analogs in ultracold systems, and from these build-

ing blocks possible diode and transistor configurations are proposed from which

atom circuits could be constructed [113]. Though quite a speculative field at the

present time, the first realisation of an atomtronic circuit was recently achieved

in [102] with a BEC analog of a SQUID circuit. This experiment uses a toroidal

BEC with a rotating weak link which is able to spin up the atoms and introduce

vortices. Such an experiment is then shown to map onto a superconducting loop

with a weak link in the presence of an external magnetic field.

4.2 Optical ring trap

Our ring trap is illustrated in figure 4.1. The trap is formed by the intersection of a red-

detuned (λ = 1070 nm) horizontal sheet beam (Section 4.2.1) which provides vertical

confinement and a red-detuned (λ = 804 nm) vertical LG beam (Section 4.2.2) to

provide annular confinement. The use of a separate sheet beam was chosen to decouple
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4.2 Optical ring trap

Figure 4.1: Schematic of optical ring trap: Vertical confinement is provided by an oblate
sheet beam in the horizontal direction, red-detuned at λ = 1070 nm. The ring trap is formed
by a tube-like Laguerre-Gauss beam in the vertical direction, red-detuned at λ = 804 nm. The
trap is formed in the green region at the intersection of the two beams. Inset is a top view
absorption image of a BEC loaded in the ring trap. The orientation of the uniform bias field
used during state transfers is indicated by B.

vertical and horizontal confinement.

4.2.1 Sheet beam

When we evaporatively cool in the CDT we ramp the beam power down from 6.8 W

to approximately 1.6 W, leaving over 5 W of λ = 1070 nm trapping light available.

This power is used to produce our sheet beam, since we only load into the sheet after

reducing the CDT power. The optics used to generate the sheet beam are shown in

figure 4.2. The zeroth order beam from the CDT AOM is sent to a separate AOM1,

which cleans up the beam profile and provides independent control of the sheet power.

A microscope slide picks off a weak reflection which is sent to a photodiode to provide

a signal for a PID controller. This provides stabilisation and control of the sheet beam

power as explained for our CDT in Section 3.7. A 3 : 2 telescope is inserted to provide

independent control of the horizontal dimension of the sheet trap at the atoms. The

beam is translated up to the atoms by a periscope and passes through a polarising

beam splitter cube (PBS) which cleans up the polarisation and also aids in alignment.

A free space prism pair is used to extend the beam profile in the vertical plane by a

1Crystal Technology 3200-115
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Figure 4.2: Sheet beam optics: The sheet beam uses discarded light from our CDT setup.
The output of the fibre laser passes through a telescope resulting in a beam that is size-matched
to the active aperture of the 110 MHz AOM. First order light is sent to the CDT optics, while
zeroth order light is sent to the sheet beam optics. A 200 MHz AOM cleans up the beam profile
and provides power control, with the undeflected light sent to a beam dump. A microscope
slide picks off a weak monitor beam sent to a photodiode used for PID power stabilisation. A
3 : 2 telescope gives added control to collimate the sheet beam at the atoms in the horizontal
direction without adjusting the CDT setup. A periscope brings the light level with the atoms
and then a polarising beam splitter cube (PBS) cleans up the polarisation and allows overlap
of guide beams for alignment. The beam is stretched in the vertical direction by a factor 4 : 1
using a free space prism pair and is then finally focused in the vertical direction only onto the
atoms using a f = 75 mm cylindrical lens.

factor of 4, creating the profile shown in figure 4.3 (b), with a vertical waist of wv = 2

mm and a horizontal waist of wh = 0.5 mm. This is focused in the vertical direction

only by a cylindrical lens of focal length f = 75 mm1, giving an estimated vertical

beam waist at the focus of w0 = fλ/(4wv) ≈ 10 µm.

1Thorlabs LY1703RM-C
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4.2 Optical ring trap

Figure 4.3: Sheet beam: (a) Side view of the cylindrical lens focusing the beam in the vertical
direction only, to create a weak horizontal trap and tight vertical trap. (b) Contour plot of
intensity for the input beam before the cylindrical lens. The beam is extended in the vertical
direction by the prism pair to focus more tightly and strongly confine the atoms in the vertical
direction. Dimensions shown are 1/e2 diameters. (c) Vertical absorption image of atoms loaded
into the sheet beam only. The dimensions of the cloud are larger than our typical ring traps
which provides an error margin should the sheet and ring drift out of alignment.

Trapping parameters

The sheet beam power used is 100 mW, corresponding to a calculated trap depth of 550

nK. This shallow trap depth ensures evaporation of any thermal atoms created during

loading and a high condensate fraction, typically over 85%. For powers below 50 mW

gravity dominates and the trap minimum disappears. The trapping frequencies of the

sheet are measured by translation of the BEC from the trap minimum by application

of a quadrupole magnetic gradient, the orientation of which is selected by application

of an appropriate uniform bias field. The fields are then abruptly removed and the

BEC is allowed to freely oscillate in the sheet trap. To amplify the signal we measure

oscillations in the BEC position at long time-of-flight (TOF) (18 ms). The measured

trapping frequencies across the sheet, along the sheet, and vertically are ωx = 2π× 6.3

Hz, ωy = 2π × 7.1 Hz, and ωz = 2π × (400 ± 13) Hz respectively. Such weak in-plane

trapping frequencies are important for creating a level ring trap and are also found

to be beneficial for detection of angular momentum. Typically we load about 2 × 105

atoms into the sheet which, using (2.44), gives a chemical potential of µ ≈ 460 Hz.

This gives the corresponding Thomas-Fermi radii as Rx = 52 µm, Ry = 46 µm, and

Rz = 0.8 µm, in rough agreement with the observed density profile in figure 4.3(c).

Alignment

Due to the short Rayleigh range, zR = πw2
0/λ = 0.3 mm, alignment of the sheet beam

proved very difficult. The optimal solution to finding the sheet beam was to overlap
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Figure 4.4: Repump sheet beam for alignment: A separate repump beam is overlapped with
the sheet beam on the PBS cube before the prism pair. The repump beam produces a strong
signal, pumping atoms into the imageable F = 2 state. (a) The repump beam is flashed on
at various points during TOF. The visibility of the atoms allows us to map out the repump
beam position and profile, and hence find the overlapped sheet trapping beam. (b) A horizontal
absorption image of a cloud which has only partially fallen into the repump beam, hence only
the bottom half is in the visible F = 2 state.

the beam with a repump beam on a PBS cube before the prism pair. Unlike the sheet

beam, which has to be in close proximity to the atoms in trap to significantly distort

their trapping potential and produce an observable signal, any F = 1 atoms which pass

through the repump sheet will be pumped to the imageable F = 2 state. We therefore

flash on the the repump beam during TOF, and vary TOF to determine the height of

the beam. By flashing the repump on just before imaging, only a slice of the cloud is

pumped to the F = 2 state, hence we can find the focus by minimising the thickness

of this slice. Figure 4.4(a) illustrates this technique, and figure 4.4(b) is an absorption

image of a cloud where only half the cloud has passed into the repump sheet. This

technique was able to get the alignment close enough to observe distortion of the BEC

profile due to the trapping sheet. The alignment of the sheet trap was then chosen to

minimise heating upon transfer. Any tilt in both directions was removed by rotation

of the cylindrical lens, and vertical walking of the beam.

A disadvantage of using an attractive sheet beam for vertical confinement is the

presence of weak fringing near the focus. In our case we observe two local minima

about the focus separated by ≈ 200 µm along the direction of propagation. Private

correspondence with the NIST group [100] revealed that a similar problem was observed

in their setup. Despite numerous attempts, the cause of the fringing could not be

established and the solution was simply to load into one of the fringes. The approximate

spacing of the fringes seems to be weakly dependent on the angle of incidence, hence

we theorise the cause could be due to a reflection, however the fringe spacing does

not fit with interference from a counter-propagating reflection, nor reflection within

any optical coating. Another possible cause could be chromatic aberrations due to the

broad linewidth of the fibre laser, however we would expect the spectral distribution

to only have one maximum.
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4.2 Optical ring trap

Figure 4.5: Laguerre-Gauss intensity profile and phase winding: Top figures show the intensity
profile and bottom figures show the azimuthal phase winding of an LG beam for ` = 5, 3, 1 from
left to right. From this we observe the trend of increasing annulus radius with increasing `.

4.2.2 Laguerre-Gauss beam

Our ring trap is an optical dipole trap formed by a red-detuned Laguerre-Gauss (LG)

laser mode. LG modes are a complete basis set for paraxial light beams with circular

symmetry about their axis of propagation. Two indices identify a given mode denoted

by LG`p, where p is the radial order which we are not concerned with and set to be 0, and

` is the angular order. In contrast to the planar wave fronts of the Hermite-Gaussian

(HG) modes, for ` 6= 0 the LG beams have an azimuthal phase term ei`θ which results

in helical wave fronts [114]. This phase winding about the beam’s axis means an LG

beam can be thought of as an optical vortex of topological charge `.

The LG beam is integral to our experiment for two reasons: (i) an LG beam

has a doughnut intensity profile [115] which creates the toroidal optical dipole trap,

and (ii) the helical wave front means LG modes possess an orbital angular momentum

of `~ per photon [116], quite distinct from the spin angular momentum associated

with the polarisation state. As discussed in Section 4.3, this is used to impart angular

momentum to the ring BEC and generate a persistent current. The relation between the

orbital angular momentum of an LG beam and the circular polarisation of a photon

is analogous to the orbital angular momentum and spin of an electron. The orbital

angular momentum is associated with the spatial mode, while spin is intrinsic to the

particle.

The field amplitude of an LG laser mode is given by [115]

E(LG`p) ∝ exp

[
−ikr2z

2(z2
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]
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]
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2r2

w2

)
, (4.1)

where z is the distance from the beam focus, zR is the Rayleigh range, k is the wave

number, w is the Gaussian beam waist, r is the radius, φ is the azimuthal angle, and
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L`p is the generalised Laguerre polynomial. From this we find the intensity profile

I(LG`p) =
2

`!

P

πw2

(
2r2

w2

)` [
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(
2r2

w2

)]2

exp

[
−2r2

w2

]
, (4.2)

where P is the total beam power. The intensity profile as a function of ` is shown in

figure 4.5. This doughnut profile has clear applications in forming ring traps, as well

as other features of note. The radius of the intensity minimum scales with topological

charge as R` = w
√
`/2, and we also observe that a true intensity zero is created within

the ring due to the phase singularity. The intensity profile inside the ring scales as r2`,

hence a blue-detuned LG beam has applications in creating novel trapping geometries

with high power laws [117–119].

In recent years LG beams have attracted much interest, and found a host of diverse

applications. LG beams are used extensively in optical tweezers, which use the refrac-

tion of light about an object with higher refractive index than the surrounding liquid to

optically trap and manipulate samples ranging from simple dielectric spheres to cells,

chromosomes, and protein motors. LG beams offer distinct advantages in being able to

trap both high and low-index particles [120], holding samples in low intensity regions

where cell damage is reduced, and rotating samples due to absorption of angular mo-

mentum from the trapping LG beam [121]. LG beams were used in a recent experiment

which demonstrated the possibility to use two beams of incoherent radio waves, trans-

mitted on the same frequency but encoded in two different orbital angular momentum

states, to simultaneously transmit two independent radio channels [122]. LG beams

have also found numerous other applications including astronomy [123], phase contrast

microscopy [124], and in secure encoding of information in orbital angular momentum

states [125].

Several methods have been developed in the last two decades for the production

of LG beams, or more often for the production of fields with a single dominant LG

mode. While LG modes can be produced directly from a laser resonator [126], it is

often simpler to obtain these modes by externally converting the HG mode output

from a conventional laser. The creation of pure LG modes is possible using a cylin-

drical lens telescope with an input beam mode HGm,n, aligned at 45◦ to the principal

axis of the lens, provided either m 6= 0 or n 6= 0 [127, 128]. Approximations to LG

beams can be produced using spiral phase plates [129, 130] and computer-generated

holograms [131, 132]. Such devices introduce a screw-phase dislocation in the centre

of a Gaussian beam, which to first order approximates the spiral wavefront of an LG

beam. On propagation the phase dislocation causes destructive interference leading to

the annular intensity profile and a high percentage of a given LG component, with `

set by the phase pitch of the spiral phase plate, or correspondingly the order of the

dislocation in the hologram.
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4.2.3 Spatial light modulator (SLM)

Our technique for creating LG beams uses a spatial light modulator (SLM). An SLM

is a rapidly emerging tool which provides highly customisable control of light fields by

locally modulating light according to a fixed spatial pixel pattern. Modulation options

include amplitude only modulation used in many projectors, but to create a phase wind-

ing we require a phase modulating SLM. Simultaneous amplitude and phase modulation

is available but at the cost of some coupling between the two parameters. Several SLM

technologies exist, including optically-addressed SLMs and digital micromirror arrays,

however the most common SLM implementations are based on liquid crystal displays

(LCD), which we use here. In an LCD-based SLM the alignment of the nematic liquid

crystal layer at a given pixel dictates the phase shift imparted to the light passing

through that pixel. Higher phase shifts are achieved by retro-reflecting the light off a

dielectric mirror positioned behind the display, to double the total phase shift. This

provides a flexible way to create the phase profiles generated by spiral phase plates

or holograms, without the difficulty of fabricating devices, and with greater control

to achieve smoothly varying phase profiles and hence higher coupling to a single LG

mode. SLMs also provide the tempting possibility to dynamically vary optical fields

and create time-varying trapping potentials.

In principle, to create an LG beam we simply need to display a phase winding on

the SLM where the pixel value azimuthal increases about a central point, and reflect

a Gaussian beam off of it. In addition the linearity of phase imprinting can be used

to add several other phase patterns on top of this and simultaneously achieve several

operations:

eiφwindingeiφgratingeiφlenseiφcorrection = ei(φwinding+φgrating+φlens+φcorrection), (4.3)

where our commonly used phase operations are listed below.

Operation Phase profile

Phase winding φwinding = mod (`θ, 2π)

Blazed grating φgrating = mod (kxx+ kyy, 2π)

Lensing φlens = mod
(
−k x

2+y2

2f , 2π
)

Correction see Section 4.2.5

The phase winding φwinding imprints the desired angular momentum onto the beam,

the blazed grating φgrating directs the beam, the lensing φlens controls the focus of the

beam, and the correction phase pattern φcorrection cancels imperfections on the SLM

and other parts of the optical setup. This is illustrated in figure 4.6. Since the phase

shift of the SLM is in the range {0, 2π}, the functions are all mod (2π) to make use of

the equivalence between 0 and 2π phase shift. We note that if the functions were all

mod (α2π), where α < 1, the effect would be to diffract more of the light into other

orders. This means that the first diffraction order we use only contains LG modes of a
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Figure 4.6: Decomposed SLM pattern and corresponding LG beam intensity profile: Left
images show pixel values displayed on the SLM, where black = 0 and white = 2π. The LG
beam phase winding is created by displaying an azimuthally increasing pixel value, in this case
for ` = 3. Additional operations are achieved by simply adding further phase profiles. A blazed
diffraction grating creates a bright first order beam, spatially separated from the undiffracted
light and other orders. The focus of the first order beam is adjusted by adding a lensing phase
profile formed from a radially varying pixel value. Finally a correction pattern is added which
compensates for abberations present in the SLM and subsequent imaging optics. In this case
the provided Hammamatsu correction is used, only correcting for unwanted phase shifts on the
SLM. As illustrated on the right this creates a focused LG beam in the first diffraction order,
here presented for ` = 20. Residual imperfections are due to the incomplete correction pattern
used (see Section 4.2.5).

single ` value, the value of which is dictated by the periodicity of the phase winding,

not the absolute phase value. Due to their design, SLMs inherently reflect a portion

of the incoming light without applying any phase shift. The inclusion of a diffraction

grating spatially separates the light field we want from this unmodulated light and

other diffraction orders.

SLM Choice

Having decided upon a reflective, phase modulating SLM, our choice was reduced to

three manufacturers: Hamamatsu, Holoeye, and Boulder Nonlinear Systems. The first

criteria is efficiency, i.e. the maximum amount of light possible to diffract into a single

order. This is a strong function of the back mirror, and the fill factor (the fraction of the

SLM area which is usable pixels). Both Hamamatsu and Boulder provide high filling

factors and high efficiency dielectric mirrors, offering efficiencies as high as 95%. Holo-

eye offers lower efficiency, but much higher screen resolution enabling smoother phase

profiles. Although not essential to this work, the possibility to dynamically vary the
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light field depends on the refresh rate of the SLM. SLMs also suffer from phase droop,

where the crystal tends to relax between refreshes, creating a time varying phase profile.

Both Hamamatsu and Holoeye run the SLM as a second monitor via a DVI connection

and hence only refresh at 60 Hz, which is slower than the liquid crystal’s free relaxation

rate. In practical applications this translates to a toggle rate for dynamically changing

the phase pattern of about 10 Hz. Boulder SLMs interface via PCI Express, and hence

offer a refresh rate of over 6 kHz and a usable toggle rate of about 1 KHz. Boulder

SLMs therefore offer a clear advantage for dynamic processes, however the PCI Ex-

press interface makes the SLM considerably more difficult to communicate with, and

the response time comes at a financial cost. Experimentally, the phase droop of the

Hamamatsu SLM was not observable and we could not attribute any erroneous heat-

ing to the effect. We therefore conclude that for high-efficiency, static light fields the

Hamamatsu SLMs provide a good choice and use the LCOS-X10468-02 with dielectric

mirror for λ = 750− 850 nm.

The implementation of the SLM is illustrated in figure 4.7. As explained in Section

4.3, the LG beam is one beam of a two-photon Raman transition used to impart angu-

lar momentum to the atoms. Both Raman beams exit the same fibre with orthogonal

polarisations and frequency shifted from one another by the relevant Zeeman energy.

The horizontally polarised beam, referred to as the LG beam, is reflected off the SLM

and hence picks up a phase winding and angular momentum. The vertically polarised

beam, referred to as the G beam, does not, and hence the difference in angular mo-

mentum of the two beams is imparted to the atoms during the Raman transition.

Concentrating on the SLM setup for the LG beam, the beam is partially collimated

out of the fibre by an achromatic doublet lens1. The beam is still diverging when it

reaches the SLM, at which point it completely fills the SLM screen with a waist of

6 mm, before reflecting off at a shallow angle of less than 10◦ to the normal. Before

reaching the SLM the light passes through a neutral optical density filter. Although

not essential, the required power in the LG beam is several orders of magnitude less

than that in the G beam, hence the filter allows the balance of power between the two

Raman beams to be more comparable, and therefore small drifts in the polarisation

have a smaller relative effect. The phase imprinted on the beam is shown in figure 4.6.

A lensing pattern is added to the SLM which collimates the incoming beam, and a

diffraction grating spatially separates the various orders. Both Raman beams are then

recombined on a cube and focused onto the atoms using an aplanatic meniscus lens2

and companion doublet3 with a combined focal length of f = 86 mm.

1AC254-100-B-ML
2CVI Melles Griot 01LAM555
3CVI Melles Griot 01LAO555
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Figure 4.7: SLM optics: The two beams for the Raman transition exit the fibre with orthog-
onal polarisations and frequency shifted with respect to one another. The beam with vertical
polarisation, referred to as the Gaussian beam, is split off a PBS cube and telescoped down so
as to have a large waist at the atoms. The beam with horizontal polarisation, referred to as
the LG beam, reflects off the SLM at a shallow angle, imprinting the phase displayed. Both
beams are recombined on a PBS cube and sent towards the atoms. The inset plane illustrates
the various orders of the LG light field before the final imaging lens. The light is focused down
onto the atoms and the Gaussian beam is overlapped with the 1st order LG beam.

4.2.4 Pseudo-Laguerre-Gauss beam

The SLM allows us to imprint the necessary helical wavefront onto a Gaussian beam,

however this is not a true LG beam since the field intensity at the SLM does not have

the characteristic annular profile. As the beam propagates, destructive interference at

the phase singularity will give rise to a pseudo-LG beam with a high mode overlap with

the corresponding LG` mode. To see this we consider the paraxial Helmholtz equation

given by
∂2fz
∂x2

+
∂2fz
∂y2

+ 2ik
∂fz
∂z

= 0, (4.4)

where fz is the field at position z, and k = 2π/λ is the wavevector. We also define the

fourier transform of the field given by

Fz(u, v) =

∫ ∞
−∞

∫ ∞
−∞

fz(x, y) exp [−2πi(ux+ vy)] dxdy. (4.5)
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From this we can easily show the effect of

1. Propagation in free space a distance z:

Fz(u, v) = F0(u, v) exp

[
−2πi

k
(u2 + v2)z

]
(4.6)

fz(x, y) = f0(x, y) ∗ h(x, y) (4.7)

where

h(x, y) =
1

iλz
exp

[
ik

2z
(x2 + y2)

]
. (4.8)

2. Action of a lens

f(x, y)→ f(x, y) exp(iφL(r)) (4.9)

where φL is the phase shift introduced by the lens

φL(r) ≈ −kr
2

2f
for r � f. (4.10)

Using these principles we numerically propagate the field at the SLM and find the field

at the focus. For our experiment the distance from the SLM to the imaging lens is

approximately 1 m, and we predominantly use ` = 3. These calculations are shown

in figure 4.8. During free propagation we observe destructive interference along the

optical axis and after 1 m the field appears strongly LG-like. Significant radial ringing

is observed which we can attribute to the contribution of higher p radial modes. After

the imaging lens the radius of the ring intensity profile is smallest at the focus, however

the central dark singularity is preserved at all positions. From these calculations we

anticipate a Gaussian waist of w ≈ 5.3 µm, and hence a ring radius for ` = 3 of

≈ 6.5 µm. We find contribution from higher p modes can be significantly reduced by

radially masking the SLM with a doughnut aperture, the outer radius of which is set

to be the vertical height of the SLM and the inner radius is chosen to minimise ringing

for a given `. We implement this by simply only applying the blazed grating to an

appropriately chosen doughnut area on the SLM, hence light outside this mask is not

deflected towards the atoms. This increases the calculated Gaussian waist to w ≈ 9

µm and the ` = 3 radius to ≈ 11 µm. This is close to our observed radius of 12.2 µm.

The properties of such pseudo-LG beams for a fixed field at the SLM are displayed

in figure 4.9. In figure 4.9 (a) we compare the intensity profile of the pseudo-LG beam

with a pure LG beam of equal winding, where the waist parameter is chosen to give

equal radius and the profiles are normalised. The two profiles are closely matched, with

the pseudo-LG beam exhibiting small radial oscillations beyond the primary peak. The

intensity profile as a function of ` is shown in figure 4.9 (b). Unlike for a true LG beam,
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Figure 4.8: Numerical calculation of pseudo-LG beam propagation: (a) By propagating the
field produced at the SLM a distance of 1 m we observe destructive interference along the
optical axis and the formation of an annular intensity profile. About the focal point of the lens
the radius of the annular intensity profile reduces, but the intensity zero at the centre never
vanishes. (b) Intensity profile of the field at the lens after free propagation for 1 m. The profile
is LG-like, but the multiple rings indicate a significant contribution of higher radial modes with
p 6= 0. (c) Intensity profile at the focal point. The LG mode at the focus appears cleaner than
that before the lens.

the ring radius scales linearly with ` as shown in 4.9 (c). This radius scaling is confirmed

by our experimental measurements, and is observed independently in [133]. For a fixed

intensity at the SLM the peak intensity at the focus scales as `−0.8±0.1, and the radial

trapping frequency scales as `−0.45±0.05. These powers are consistent with the trapping

minima being independent of ` if the peak intensity is held fixed.

An analytic expression for the field produced at the focus is derived in Appendix A

Ef (r, θ) = E0i
`−1√πf

2

z2

w

w0

r

w0
exp

(
− r2

2w2
0

)[
I `−1

2

(
r2

2w2
0

)
− I `+1

2

(
r2

2w2
0

)]
× exp

[
iπ

fλ

f − z
f

r2

]
exp(i`θ), (4.11)

where f is the focal length of the imaging lens, z is the free propagation distance be-

tween the SLM and the lens, In(z) is a modified Bessel function of the first kind, and

w0 = fλ/πw is the diffraction limit, where w is the waist of the initial Gaussian beam.

Comparison with the field for a pure LG beam in (4.1), our pseudo-LG beam displays
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4.2 Optical ring trap

Figure 4.9: Numerical calculations of pseudo-LG beam properties produced by phase imprint-
ing a Gaussian beam: (a) Comparison of pseudo-LG beam with true LG beam intensity (4.2).
The respective waists have been chosen to give equal ring radii, and both profiles have been
normalised. (b) Scaling of intensity profiles of pseudo-LG beam with `. For all `, the input
field at the SLM is held constant, only the phase winding imprinted is changed. (c) Scaling of
peak radius with ` for pseudo-LG beam. The red points are experimental data, and the blue
line is a numerical calculation which has been scaled to lie on the data. The two show good
agreement and both predict a linear relationship, in comparison to the

√
` scaling for a true LG

beam. (d) Numerical calculations of peak intensity and radial trapping frequency, ωr, scaling
with `. The points are fitted to a power law function to obtain scalings of `−0.8 and `−0.45, for
peak intensity and ωr respectively.

the important helical wavefront, ei`θ, associated with orbital angular momentum. Tak-

ing the small argument limit of In(z) ∼ 1
Γ(n+1)

(
z
2

)n
, retrieves the same small r limit of

Ef ∝ r`.

4.2.5 Correcting for abberations

As shown in figure 4.6, the initial LG beams we generated differed from those in our

calculations. We observed azimuthal variations in the intensity which had significant

implications on the smoothness of our trapping potential, and hence the stability of

superflow around the ring. These variations are introduced by unwanted phase aber-

rations present in the SLM and the optics along the LG beam path. Significant time

and effort was therefore invested in minimising such variations to create the ideal trap-

ping environment for observing persistent currents. Helpfully, due to their wide range

of applications, considerable attention has already been paid to the estimation and

correction of abberations in SLM-based optical systems. A phase pattern is provided

with our SLM to correct for known aberrations measured at production, but further
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Figure 4.10: Schematic of the SLM-based Shack-Hartmann sensor (copied with permission
from [134]): The Shack-Hartmann array produces a grid of spots, where aberrations affect
the position of each spot. The corresponding reference array produces a grid of spots, where
aberrations affect spot shape but not position. By tracking the displacement of the spot centres
between the two arrays we construct a vector map which can be fit to directly recover the
wavefront.

aberrations introduced by our setup needed to be minimised. Below we outline the

two algorithms we implemented to detect and correct such aberrations, and our final

solution based on manual correction.

Shack-Hartman algorithm

Shack-Hartmann sensors employ an array of lenslets to focus a collimated beam into

an array of spots. The displacement of each spot is proportional to the tilt of the

wavefront at that point, and the resultant tilt information can be integrated to recover

phase information. An equivalent SLM-based Shack-Hartmann sensor is described in

[134], and illustrated in figure 4.10. The Shack-Hartmann array is first displayed on

the SLM, which is composed of a grid of circular apertures, each of which contains a

blazed diffraction grating of different pitch, such that each aperture focuses to a differ-

ent spot in the focal plane. Any aberrations present along a given spot’s optical path,

will displace the spot from its true position. To find these true positions the reference

array is then displayed, which creates a grid of spots where each spot comes from the

whole SLM. In this case aberrations will primarily affect the shape of the spots and

not the geometry of the grid. By measuring the displacement of the spots between the

Shack-Hartmann and the reference array, we construct a vector map of wavefront tilts

which can be fitted to recover the aberration present in the optical system. We then

correct for this aberration by simply displaying the negative of this phase map on the

SLM, which we refer to as the correction pattern.

The vector map of spot displacements are fitted to a linear combination of Zernike

polynomials, listed in table 4.1. Firstly this ensures a smoothly varying correction

pattern, and secondly it also ensures the correction pattern cannot include phase sin-

gularities. This is significant as it guarantees the correction pattern cannot change the
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Figure 4.11: Diagram of Gerchberg-Saxton algorithm for finding phase errors: The initial
conditions consist of the modulus of the field amplitude at the SLM plane |ESLM|, which in this
case is a Gaussian, and an initial phase guess φ0, which in this case is an ` = 1 phase winding.
The field A1 is propagated to the imaging plane by a fast Fourier transform (FFT) creating
the field A2. The amplitude of the field is replaced by the modulus of the target intensity
|Eimage|, in this case an image of the uncorrected LG beam, to create the field A3. This field
is inverse propagated back to the SLM plane to create the field A4, the phase of which is our
improved estimate of the phase required to create the target image. This process is iterated
until convergence.

winding number of the SLM and hence the topological charge of the LG beam pro-

duced. The Shack-Hartmann algorithm provides a robust way to cancel aberrations

and significantly improved the quality of our LG beams. For bench-top tests, the algo-

rithm allowed us to obtain highly circular LG beams with a peak-to-peak variation in

azimuthal intensity of approximately 30%.

Unfortunately this algorithm has a major drawback for cold-atom experiments

where the focal plane of interest is always within a vacuum system and hence inac-

cessible. To observe the relevant spot arrays at the focal plane of the atoms we had

to use our vertical imaging systems, hence the algorithm cannot distinguish between

aberrations introduced before the focal plane, and those inherent in the imaging sys-

tem. To efficiently track spot displacements it is advantageous to have a large grid of

many spots filling up as much of the field of view as possible, but as we discovered our

vertical imaging system introduces significant distortion when imaging off the optical

axis. This resulted in the algorithm introducing a lot of lensing aberration at the focal

plane of the atoms to compensate for the distortion of the imaging system, and hence

the algorithm could not be implemented in our system.

Gerchberg-Saxton algorithm

The Gerchberg-Saxton (GS) algorithm is a phase retrieval technique designed to deal

with the problem of finding the phase φSLM(x, y) of a light field by just knowing the
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modulus |Eimage(kx, ky)| of its Fourier transform, and the modulus of the light field

|ESLM(x, y)|:

|Eimage(kx, ky)| exp[iφimage(kx, ky)] = FFT{|ESLM(x, y)| exp[iφSLM(x, y)]} (4.12)

In the paraxial approximation the light field at the imaging plane of a lens and the light

field at the SLM plane are related by a scaled Fourier transform. From this, one can

see the general problem of finding the SLM phase to apply to a known field modulus in

order to achieve a desired field modulus at the imaging plane, is a member of the class

of problems described by (4.12). As such, the GS algorithm (and extensions thereof)

has been implemented by several groups to calculate SLM patterns required to create

complex light fields and trapping potentials [118, 135, 136]. We note that incomplete

knowledge about the phase at the imaging plane means there may exist many phase

functions with amplitudes close to |Eimage(kx, ky)| which define local minima that may

prevent us from finding the global minimum. GS is a computationally efficient opti-

misation method for finding phases φSLM(x, y) which minimise the difference between

|Eimage(kx, ky)| and |FFT{|ESLM(x, y)| exp[iφSLM(x, y)]}|.
The basic GS algorithm is sketched in figure 4.11. One provides the field modulus

at the SLM, |ESLM(x, y)|, the target field modulus at the imaging plane, |Eimage(x, y)|,
and an initial phase guess at the SLM plane, φ(0). The initial field (A1) is propagated

to the image plane by a fast Fourier transform (FFT) and the modulus of this field

is replaced by the target field modulus, |Eimage(x, y)|. This field (A3) is back propa-

gated to the SLM plane by an inverse FFT and the modulus of this field is replaced by

the known SLM field modulus, |ESLM(x, y)|. This process is iteratively repeated until

convergence and the algorithm provides a best estimate of the phase to display on the

SLM which most closely solves (4.12).

This algorithm places no restrictions on the phase of the image field, which helps by

providing additional freedom to achieve the target modulus. However for the case of our

LG beam the phase at the image plane is vitally important as we need to preserve the

phase winding associated with the orbital angular momentum of the beam. As detailed

in [137] one can still use the GS algorithm to detect and correct for aberrations by using

an image of an uncorrected LG beam as the target amplitude and the phase winding

φ(0) = `θ as the initial phase guess. The GS algorithm will then converge on the phase

profile φSLM = `θ+φaberration, providing the correction pattern φcorrection = `θ−φSLM.

Due to the phase freedom inherent in the GS algorithm, convergence to this partic-

ular solution is strongly dependent on the amount of aberration present in the system.

Uncorrected LG beams which differ too greatly from a perfect LG beam will con-

verge to phase solutions differing from the addition of a phase winding and smooth,

singularity-free aberrations, and cannot be corrected using this method. Experimental

implementation of this method also suffers from several other pitfalls, namely accurate

knowledge of the input field modulus, |ESLM(x, y)|, and precise centring and scaling of
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the target image to match the propagated SLM field intensity. These uncertainties can

lead to unnecessary lensing and phase singularities near the centre of the correction

pattern. Though difficult to implement, we were able to achieve peak-to-peak varia-

tions in azimuthal intensity of approximately 50%, and could use this method in the

actual system.

Manual correction

The two algorithms described above were instrumental steps along the way to achieving

smooth LG beams, but in the end we utilise neither. Our final correction procedure

is based on observations made during our attempts to implement these algorithms.

As shown in table 4.1, we can identify the addition of a given Zernike mode with

a characteristic distortion of the LG beam (column 4), and correspondingly in the

atom density (column 5). We can therefore approximately identify from the LG beam

shape and intensity profile which of the low order Zernike polynomials is present in

the aberrations and compensate by subtracting them from the correction pattern. The

general procedure is as follows

1. Careful alignment of the SLM optics is essential for getting sufficiently close to

implement any correction procedure. All optics should be kept clean and any

transmissive optics should be positioned as close to normal to the beam as pos-

sible. The quality of the initial beam on the SLM is very significant and any

fringing, or diffraction rings due to the fibre output package should be minimised.

2. Apply the desired phase winding, diffraction grating, and lensing to the SLM (The

correction is not universal and will not work for different windings or substantially

different gratings and lensings.) Also ensure the supplied Hamamatsu correction

pattern is added which corrects for most of the aberrations.

3. By looking at an image of the light on the camera one can remove nearly all of

the Z(2,−2) and Z(2, 2) Zernike modes by walking the beam in the horizontal

and vertical direction. The target should be to produce an LG beam as close to

circular as possible.

4. Addition and subtraction of the eight Zernike modes listed in table 4.1 can be

done in real time by looking at the camera image and trying to produce as smooth

an LG beam as possible. Using this technique we can achieve azimuthal peak-

to-peak variations in the intensity of . 10%. Use of higher order Zernike modes

is not necessary and identifying their presence is beyond our imaging resolution

and not feasible to do by eye.

5. Aberrations present in our imaging system mean the true ring intensity profile

differs slightly from that imaged on the camera. Therefore, as we are concerned
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Zernike

mode
Function

Phase pro-

file

Effect on

LG beam

(theory)

Observed

effect on

atoms

Z(2,−2) r2
√

6
sin(2θ)

Z(2, 2) r2
√

6
cos(2θ)

Z(3,−1) 3r3−2r√
8

sin(θ)

Z(3, 1) 3r3−2r√
8

cos(θ)

Z(3,−3) r3
√

8
sin(3θ)

Z(3, 3) r3
√

8
cos(3θ)

Z(4,−4) r4
√

10
sin(4θ)

Z(4, 4) r4
√

10
cos(4θ)

Table 4.1: Table of Zernike polynomials: The first three columns list the Zernike polynomials
which we use to correct for aberrations, including the functional form and phase profile. The
fourth column is a numerical calculation to illustrate how addition of the corresponding Zernike
polynomial to the SLM phase modifies the LG intensity profile at the focus. The fifth column
is an absorption image of atoms loaded into the corresponding LG beam. This distinctive
mapping between atomic density profile and Zernike polynomial allows us to manually subtract
excess Zernike orders, and hence cancel aberrations and achieve a smooth density profile.

with optimising the true trapping potential, we now modify our correction pattern

further by identifying Zernike modes present in the actual atom density, as shown

in column 5 of table 4.1. This stage is the slowest as correction cannot be done in
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real time as a new BEC must be loaded into the ring trap and destructively imaged

in situ to measure the effect of modifying the correction pattern. Typically within

20 iterations we estimate azimuthal peak-to-peak variations in LG intensity are

reduced to < 10%. Due to diffraction effects discussed in Section 3.9.3, to obtain

a true measure of the density profile it’s important to image on resonance, and

hence we use partial transfer absorption imaging to reduce the optical density

[79].

While laborious, this manual correction procedure is necessary for producing smooth

ring traps needed for sustaining superflow with very low atom density or in deep ring

traps using a high intensity LG beam.

4.2.6 Loading procedure

The normal criteria for loading a trap are maximising atom number transfer and min-

imising heating. When loading our atoms from the CDT to our ring trap, these criteria

are satisfied for a range of loading procedures, however we must consider a third,

stricter criterion. Due to the multiply-connected geometry of the ring trap, any os-

cillations induced during transfer which would normally dissipate and contribute to

heating, can now lead to unwanted, long-lived superflow. Our initial loading procedure

was done over 2 seconds, as no visible gains were observed for longer loading times.

When we then impart angular momentum, ~`, to the atoms by a two-photon Raman

transition (see Section 4.3) we observe a scatter of angular momentum states with a

mean magnitude of ~(` + 1). To prove this scatter was induced at loading we reverse

the frequencies of the Raman beams, hence reversing the ordering of absorption and

stimulated emission, and thereby imparting angular momentum −~` to the atoms. The

observed angular momentum states retain the same scatter but the mean magnitude is

reduced to ~(`− 1). Hence we conclude the loading procedure quasi-randomly stirs the

condensate with an average angular momentum +~. We therefore increased the load-

ing time to 6 seconds as shown in figure 4.14 and no longer observed any mechanical

stirring on loading.

Unfortunately we observe a slow drift in the position of our LG beam when the

experiment is running. Typically the experiment needs to run for over an hour (ap-

proximately 40 cycles) before the LG beam stabilises, by which point the beam has

moved approximately 30 µm at the atoms from its original starting position. The mag-

nitude of this motion is sufficiently large so as to misalign the LG beam with respect to

the sheet potential and create a pooling of atoms to one side of the ring trap. The origin

of this drift could not be discovered, so instead the system is allowed to “warm-up” for

a couple of hours before overlapping the ring and sheet potentials, by which point the

residual drift is much smaller and slower.
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4.3 Imparting angular momentum

Traditionally, orbital angular momentum has been transferred to BECs by some form

of mechanical stirring such as by a laser beam or an optical lattice. Such methods

have proven successful for many studies, including the creation of large vortex lattices

[31, 32], critical velocity studies [138–140], and the observation of vortex dynamics and

nucleation [141]. In general however, mechanical methods impart an unknown amount

of orbital angular momentum to the system and cannot be used to deterministically

prepare states of a given circulation. Recently an exception to this was achieved in

[102], where a well defined and deterministic ladder of circulation states was observed

as the rotation frequency of a rotating weak link was increased.

Another class of methods exist which involve imprinting a well defined phase wind-

ing onto the BEC wavefunction to deterministically prepare a state of known circula-

tion. The first generation of a vortex in a BEC employed such phase engineering by

using a rapidly rotating Gaussian laser beam to couple the external motion to internal

Rabi oscillations, allowing creation of a state with exactly one unit of circulation [30].

Doubly quantised vortices have also been topologically imprinted in condensates by

inversion of the axial bias field in a Ioffe-Pritchard magnetic trap [89, 142]. As the bias

field is inverted, the atomic spins adiabatically follow the field direction, remaining in

the same state with respect to the local magnetic field, but transitioning to a different

magnetic state with respect to the fixed lab frame. The nature of the field rotation

varies azimuthally and hence a topological phase factor is imprinted on the atoms which

can be interpreted as a manifestation of Berry’s phase [143]. This technique has also

been used to generate novel spin structures such as coreless vortices [144] and Skyrmion

states [145].

As discussed previously, LG beams carry well defined quanta of orbital angular

momentum along their direction of propagation, associated with their azimuthal phase

winding. As a result, several experiments have made use of this feature by coherently

transferring atoms with such a beam, and thereby imparting this angular momentum

to the atoms, or equivalently, imprinting the phase winding onto the condensate. To

coherently transfer the atoms to a stable state, these experiments use two-photon trans-

fers, which avoid population of the short-lived excited state and return the BEC to the

stable ground state, as explained in Section 3.2.3. The total angular momentum trans-

ferred in such a transition is then the difference between the two beams, which for the

Gaussian (G) plus LG beam configuration is simply `~ per atom, where ` is the angular

mode of the LG beam. For efficient transfer and to prevent multi-photon processes, the

initial and final state have to be energetically separated from one another. The energy

associated with rotation is typical of the order of a few Hz and is therefore insufficient

to prevent additional coupling of the final state.

The first experimental observations of such transfers are reported in [99, 146]. These
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Figure 4.12: Scheme for two-photon Raman transfer using G plus LG beams: The two Raman
beams are composed of our trapping LG beam which forms the ring trap, and a second, broad
Gaussian beam, co-propagating in the vertical direction. The basis of states we transfer between
are the mF = 1 and mF = 0 magnetic states of the F = 1 hyperfine level which are energetically
separated by ωeg ≈ 7 MHz in an external bias field of ≈ 10 G orientated in the plane of the
sheet trapping beam. The frequency difference between the G and LG beam is equal to the
Zeeman splitting, ωeg, plus the two-photon detuning, δ. The Raman beams are both far red
detuned of the D1 and D2 transitions by an amount ∆D1 and ∆D2 respectively to prevent
population of the upper state. With respect to the field the G beam is π polarised and the LG
beam is equal parts σ+ and σ− polarised.

experiments were similar to Bragg diffraction, in that the initial and final states are

different momentum states of the same atomic state differing by 2~k, coupled by a

counter-propagating Gaussian and LG1
0 beam. Atoms which undergo the transfer ab-

sorb a photon from one beam and stimulatedly emit a photon into the second beam

acquiring both linear momentum of 2~k, and orbital angular momentum of ~. The

recoil energy associated with this linear momentum, Er = 4(~k)2/2m, is sufficiently

large to energetically separate the initial and final states, however the linear momentum

kick causes oscillations of the final state within the trap. This problem is circumvented

in [99] by initially Bragg scattering the atoms into the 2~k state, and then after half

a trap oscillation period, the LG plus G transfer removes this linear momentum and

imparts orbital angular momentum.

For studying the decay of persistent currents it’s imperative that we prepare the

same circulation state every time. Therefore we employ the phase-engineering approach

described above, utilising the phase profile of an LG beam. Our method involves Ra-

man coupling two different magnetic sublevels of the
∣∣52S1/2, F = 1

〉
hyperfine state,

|F = 1,mF = 1〉 and |F = 1,mF = 0〉, using co-propagating LG and G beams, as illus-

trated in figure 4.12. This method is similar to that used in [100] and [147]. Unlike

[100], we use our LG trapping beam as one of our Raman beams, automatically ensur-
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Figure 4.13: Protocol for imparting rotation to ring shaped BEC: (a) While still in the CDT
the bias field of 10 G is applied to give time for the field to stabilise (step 3 in figure 4.14). (b)
As described in Section 4.2.6 the BEC is loaded into the ring trap, where the LG beam acts
as both trapping beam and one of the Raman beams (steps 4-6 in figure 4.14). (c) The second
Gaussian Raman beam is flashed on for ∼ 200 µs. The atoms undergo a two-photon π pulse to
the |1, 0〉 state, acquiring `~ units of orbital angular momentum. (d) The small, non-rotating
remnant (≈ 5%) left in the |1, 1〉 state is immediately microwave π pulsed to the |2, 2〉 state in
≈ 40 µs. (e) A short imaging pulse (≈ 10 µs) scatters the |2, 2〉 atoms out of the trap leaving
only |1, 0〉 atoms rotating in the ring trap. Steps (c)-(e) are all performed sequentially in step
7 in figure 4.14.

ing maximal spatial overlap between the BEC and the Raman beams. A second broad

Gaussian beam couples the two mF states, with both beams far red-detuned from both

the D1 and D2 transitions to minimise spontaneous emission and heating. The mF = 1

and mF = 0 states are energetically split by ωeg ≈ 7 MHz by the application of a uni-

form bias field of about 10 G. The frequency difference between the Raman beams is

therefore equal to ωeg plus the two-photon detuning, δ, which we aim to equal zero.

As discussed in Section 3.5, at this field the Zeeman splitting E(|1, 0〉 → |1, 1〉) differs

from E(|1,−1〉 → |1, 0〉) by 14.4 kHz, hence provided the two-photon Rabi frequency is

significantly smaller than this energy difference, the mF = −1 state can be considered

far detuned and the F = 1 manifold reduces to a two state, or spin-1/2 system. The

polarisation of the Gaussian beam with respect to the field direction is π, and the LG

is equal amounts of σ+ and σ− polarisation. Due to the energy difference of the beams

only the σ+ polarised light contributes to the Raman transition and hence the two-

photon Rabi frequency, however both polarisations contribute to the dipole potential

and inelastic scattering.

4.3.1 Rotation procedure

The rotation protocol used in Chapters 5 and 6 is outlined in figure 4.13.
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(a) While still in the CDT the states |1, 1〉 and |1, 0〉 are Zeeman split using the

antibias1 field to apply a uniform field of 10 G. Early application gives time for

the field to stabilise and eddy currents to dissipate during loading of the ring

trap.

(b) The BEC is then loaded into the ring trap, where the trapping LG beam also

acts as one of the two Raman beams.

(c) The second Raman beam, a broad co-propagating Gaussian beam, is flashed on

two-photon resonance (δ = 0) for a time tπ = π/ΩR ≈ 200 µs, performing a

π pulse and flipping the state vector from pure |1, 1〉 to pure |1, 0〉. The atoms

absorb a photon from the Gaussian beam and stimulatedly emit one into the LG

beam, acquiring orbital angular momentum −`~, but no linear momentum. The

short pulse time and broad Gaussian minimise any oscillations induced by the

sudden change in the dipole potential.

(d) Uncertainties in the Raman beam power and field detuning mean a small fraction

(≈ 5 − 10%) of the atoms remain in the |1, 1〉 state. This small component is

found to fundamentally reduce the stability of persistent currents and has to be

removed. This is done by first transfering this remnant to the |2, 2〉 state using

a microwave π pulse of tπ ≈ 40 µs. The high Rabi frequency of the microwave

coupling dominates any fluctuations in detuning and ensures perfect transfer.

(e) We then apply a short resonant imaging pulse of ≈ 10 µs which scatters the |2, 2〉
atoms out of the trap without affecting the rotating |1, 0〉 state.

Following this rotation protocol the LG beam intensity is then typically ramped to its

final value over 3 seconds. The complete sequence diagram is shown in figure 4.14. We

note that cleaning up the non-rotating remnant is of vital importance to the stability of

the resultant superflow. This is in contrast to the results of Chapter 6 where we study

the stability of co-rotating mixtures and find all mixtures are stable for a few seconds.

Here we find that due to the relative rotation of the remnant in |1, 1〉 and the bulk in

|1, 0〉 any instability manifests itself within about 100 ms, and so we must remove the

remnant immediately following the Raman transfer.

A limitation of this setup is that the transfer procedure prepares a BEC with cir-

culation equal to `, the winding of the LG beam. To change the prepared circulation

of the BEC we change the azimuthal mode of the LG beam, and hence change the

trapping potential. Direct comparison of BECs with different initial phase winding in

the same trapping potential is therefore not possible.

1Power supply: Delta Elektronika SM 18-50

95



4.3 Imparting angular momentum

Figure 4.14: Experimental protocol for preparing a persistent current: Red lines show the
ODT power, purple lines show the antibias field, blue lines show the sheet beam power, and
green lines show the LG beam power. The stages of the protocol are as follows: (1) 7 s:
evaporative cooling in CDT by ramping power down to 2.5 W (Section 3.7). (2) 200 ms:
adiabatic state transfer |2, 2〉 → |1, 1〉 (Section 3.8) and clean up remnant |2, 2〉 atoms. (3) 200
ms: ramp antibias field to final value of 10 G for state transfers. (4) 1 s: ramp up sheet power
to 100 mW. (5) 1 s: ramp down CDT. (6) 5 s: hold in sheet only for 1 s, then ramp up LG
beam over 3 s and hold for 1 s. (7) ≈ 200 µs: two-photon raman transfer |1, 1〉 → |1, 0〉 to
rotating state. (8) 3 s: ramp LG power to final hold value.

4.3.2 Raman wavelength

The absolute wavelength of the Raman beams is important for determining not only

the Rabi frequency, but also the dipole potential, Udip, and the inelastic scattering

rate, Rsc. This is especially important in Chapter 7 where we consider continuous

application of the Raman coupling. Using the far detuned limit for the dipole potential

and scattering rate derived in (3.42) and (3.43) respectively, and the form of the two-

photon Rabi frequency, ΩR, given in (3.30), the relevant parameters of interest are

Udip =
∑
D1

~(Ω2
LG,D1 + Ω2

G,D1)

4∆D1
+
∑
D2

~(Ω2
LG,D2 + Ω2

G,D2)

4∆D2
, (4.13)

Rsc = Γ

(∑
D1

(Ω2
LG,D1 + Ω2

G,D1)

4∆2
D1

+
∑
D2

(Ω2
LG,D2 + Ω2

G,D2)

4∆2
D2

)
, (4.14)

ΩR =
∑
D1

ΩLG,D1ΩG,D1

2∆D1
+
∑
D2

~ΩLG,D2ΩG,D2

2∆D2
, (4.15)

where Ωi,j is the Rabi frequency for the single beam i = {G,LG} for the transition

j = {D1, D2}, and
∑

D1 and
∑

D2 are sums over the excited states of the D1 and

D2 transitions respectively. Here we have explicitly considered the D1 and D2 lines
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separately as we will use a single-photon detuning comparable to the energy difference

between the two transitions.

To calculate the Rabi frequency we sum over all allowed upper states in the two-

photon |1, 1〉 → |1, 0〉 transfer, including both D1 and D2 transitions. The appropriate

dipole matrix elements are found in [76] and lead to the expression

ΩR =

√
ILGIG

2

2

~2ε0c

[
| 〈J = 1/2| er |J ′ = 1/2〉 |2

2∆D1

(
−
√

1

4

√
1

4
+

√
1

12

√
1

12

)

+
| 〈J = 1/2| er |J ′ = 3/2〉 |2

2∆D2

(√
5

24

√
5

24
−
√

1

8

√
1

8

)]
. (4.16)

Here we have included a factor of
√

1/2 as only half the LG polarisation is of the

correct handedness, and we assume we are sufficiently detuned that we can neglect

energy splittings within the hyperfine levels. We can simplify the expressions for the

scattering rate and dipole potential by using the relation [76]

〈J | er
∣∣J ′〉 ≡ 〈LSJ | er ∣∣L′S′J ′〉

= 〈L| er
∣∣L′〉 (−1)J

′+L+1+S
√

(2′ + 1)(2L+ 1)

{
L L′ 1

J ′ J S

}
, (4.17)

where the final term is a Wigner 6 − j symbol. Using this we relate the two dipole

matrix elements

〈J = 1/2| er
∣∣J ′ = 1/2

〉
= 〈L = 0| er |L = 1〉 (4.18)

〈J = 1/2| er
∣∣J ′ = 3/2

〉
=
√

2 〈L = 0| er |L = 1〉 . (4.19)

Making use of the relationship between linewidth and dipole matrix element

Γ =
ω3
D1

3πε0~c3
|d|2, (4.20)

where d = 〈L = 0| er |L′ = 1〉 is the matrix dipole element and ωD1 is the D1 transi-

tion frequency, we obtain the general expressions for the dipole potential and inelastic

scattering rate [58]

Udip(r) =
πc2Γ

2ω3
D1

(
2 + PgFmF

∆D2
+

1− PgFmF

∆D1

)
I(r) (4.21)

Rsc(r) =
πc2Γ2

2~ω3
D1

(
2 + PgFmF

∆2
D2

+
1− PgFmF

∆2
D1

)
I(r), (4.22)

where P characterise the laser polarisation (P = 0,±1 for linearly and circularly σ±

polarised light respectively). Our Gaussian light is π polarised (P = 0) and the LG

light is equal σ+ and σ− polarised, hence the dipole potential (4.13), scattering rate
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(4.14), and Rabi frequency (4.15) for the Raman setup simplify to

Udip(r) =
πc2Γ

2ω3
D1

(
2

∆D2
+

1

∆D1

)
(ILG(r) + IG(r)) (4.23)

Rsc(r) =
πc2Γ2

2~ω3
D1

(
2

∆2
D2

+
1

∆2
D1

)
(ILG(r) + IG(r)) (4.24)

ΩR(r) =
πc2Γ

2π~ω3
D1

(
1

∆D2
− 1

∆D1

)√
ILG(r)IG(r)

2
. (4.25)

The Rabi frequency, dipole potential, and scattering rate are plotted in figure 4.15

as a function of Raman beam wavelength. Both the scattering rate and Rabi frequency

scale as 1/∆2, hence to minimise heating and decoherence effects, we wish to detune

far from single-photon resonance, so long as the laser power is still sufficient to drive

the transition. The lower threshold for the Rabi frequency is limited by the field stabil-

ity. As shown in (3.11), the BEC undergoes Rabi oscillations at an effective frequency

which is dependent on the on-resonance Rabi frequency, ΩR, and the detuning from

resonance, δ. Therefore to accurately perform a π pulse, ΩR must dominate fluctua-

tions in the detuning. We empirically estimate our field fluctuations to be ≈ 300 Hz,

and hence aim for a Rabi frequency of about 3-4 kHz.

The optimal configuration to maximise the Rabi frequency is to have equal intensi-

ties in the LG and Gaussian beams, however residual roughness in the LG beam profile

demands that to maximise superflow stability we must use the minimum LG power

required to create a multiply-connected geometry. This will also minimise the heating

rate while the superflow persists in the ring trap, and hence maximise the BEC lifetime.

The LG power required to produce a ring trap is only on the order of tens of µW, hence

to achieve high Rabi frequencies we need the majority of the power in the Gaussian

beam. To minimise the dipole effect produced during the π pulse when the Gaussian

beam is flashed on, a large Gaussian beam waist of ≈ 100 µm is used to minimise the

force from gradients in the dipole potential. Based on these criteria we chose a Raman

wavelength of λ = 804 nm which produces a low scattering rate. The power in the LG

beam is limited to tens of µW by the requirement of a smooth ring potential, and hence

to compensate for the low Rabi frequency at this wavelength we use several hundred

mW of power in the Gaussian beam.

We also note that due to interactions with both D1 and D2 lines, a special point

exists at λ = 790 nm where the dipole potential vanishes, but the Rabi frequency re-

mains large. This has potential applications for achieving strong Rabi coupling without

modifying the trapping potential of the atoms.
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Figure 4.15: Effect of Raman beam wavelength on dipole potential, two-photon Rabi fre-
quency, and inelastic scatting rate: The left plot illustrates the effect of Raman wavelength on
dipole potential, which scales as 1/∆ for large detuning. The middle plot shows the two-photon
Rabi frequency and the right plot shows the inelastic scattering rate, both of which scale as
1/∆2 far from resonance.

4.3.3 Raman beam setup

We generate the two Raman laser beams using the setup illustrated in figure 4.16. The

laser light is produced using a Ti:Sapphire laser1 pumped with an 18 W green laser2.

The Ti:Sapphire is a CW laser with tunable wavelength over the range 700 to 1030

nm, providing complete freedom in the wavelength of our Raman beams. Importantly

the rms linewidth of the laser is < 75 kHz, equivalent to a coherence length of over 4

km. This ensures coherence between the two Raman beams regardless of their relative

path difference. The large output power of the Ti:Sapphire of up to 4 W permits us to

achieve high Rabi frequencies and compensates for significant losses within the dual-

pass AOMs and fibre coupling.

We create our two Raman beams of orthogonal polarisation and relative frequency

difference ωeg, by passing the light through an 80 MHz AOM3 and splitting it off a

PBS cube into two beams of orthogonal polarisation with relative power controlled by

a half-waveplate. We then shift the frequency of each of these beams using a dual-pass

AOM4 setup, with the Gaussian beam frequency shifted by 2 × 80 MHz and the LG

beam frequency shifted by 2 × (80 MHz−ωeg/2), thus matching the two-photon res-

onance condition. Using two dual-pass AOM setups allows us to vary the frequency

of the Raman beams without altering the alignment into the fibre. To ensure phase

coherence between the two beams we drive the two AOMs by function generators5 con-

nected in a phase-lock-loop configuration, where one acts as the master oscillator for

the other. To provide precise control of the AOM switching times needed for π pulses,

we use an RF switch6 to control the signal to each AOM.

Power stabilisation of the two Raman beams is achieved by picking off weak reflec-

1Coherent Ti:Sapphire MBR-110
2Coherent Verdi V18
3Crystal Technology Inc. 3080-125
4Crystal Technology Inc. 3080-125
5Agilent 33250A
6Mini-Circuits ZYSWA-2-50-DR
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Figure 4.16: Overview of Raman laser system: The Raman laser light is generated by an
optically pumped tuneable wavelength Ti:Sapphire laser capable of outputting up to 4 W of
laser light. An AOM provides switching for both Raman beams and power stabilisation for
the Gaussian beam. The relative power distribution between the LG and Gaussian arms is
controlled by a half-waveplate before the first PBS cube. Both LG and Gaussian light then
go through a dual-pass AOM, shifting the frequency of the Gaussian light by 2× 80 MHz and
that of the LG light by 2× (80 MHz−ωeg/2) to match the energy difference between the |1, 1〉
and |1, 0〉 states. Both arms include microscope slides which pick off weak reflections towards
photodiodes used for PID-based power stabilisation. The frequency shifted Raman beams are
then recombined on the PBS cube and are coupled into a polarisation-maintaining fibre. The
output of this fibre is that shown in figure 4.7.

tions towards monitor photodiodes using microscope slides inserted in each beam path.

The photodiodes provides a signal for a PID which alters the AOM efficiency to match

the monitor signal to a reference signal provided by the control software. The same

setup is used to stabilise the CDT (Section 3.7) and sheet beam (Section 4.2.1) pow-

ers. The LG beam power is stabilised by changing the LG frequency AOM efficiency

while monitoring the light level after the dual-pass AOM. This cannot be done for the
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Gaussian arm, as the G frequency AOM is only flashed on for a few 100 µs during the

Raman π pulse which is too fast for the PID to respond to. We therefore only stabilise

the power incoming to the Gaussian dual-pass AOM by altering the efficiency of the

first AOM which is common to both Raman beams.

After passage through the dual-pass AOMs the two polarisations are then recom-

bined on the PBS cube and coupled into a single-mode polarisation maintaining fibre1.

To ensure the polarisations of the different frequency components remain orthogonal

the input polarisation is aligned with the axis of the fibre using a half-waveplate. While

we do observe some contamination of the polarisation for each frequency at the fibre

exit, this is on the order of a couple percent and has no discernible effect on the Raman

transfer.

The two Raman beams exit the fibre shown in figure 4.7. As described in Section

4.2.3 the LG beam with horizontal polarisation and frequency shifted −ωeg with re-

spect to the Gaussian beam is sent towards the SLM. The Gaussian beam with vertical

polarisation and frequency shifted +ωeg with respect to the LG beam is telescoped

down ≈ 10 : 1. This produces a small beam which focuses to a large beam at the

atoms. This minimises the optical force exerted during the π pulse and helps ensure

the Rabi frequency is equal at all points around the ring. The vertical imaging light is

overlapped with the Gaussian beam on a 90 : 10 glass sampler inserted in the Gaussian

path, thus discarding 10% of the Gaussian light and 90% of the vertical imaging light.

4.3.4 Coherent Raman Rabi oscillations

To test the suitability of our Raman beams for performing coherent Rabi oscillations we

first used two Gaussian beams in a modest field of 1.67 G, corresponding to a Zeeman

splitting of 1.17 MHz. At this field the splitting between the |1, 1〉, |1, 0〉, and |1,−1〉
states are essentially equal and the Raman beams couple all three states. Our initial

attempts at Rabi oscillations are illustrated by the plot in figure 4.17 (a), where we

observed clear decoherence and the system quickly tended towards equal populations

in all three states. The phase coherence between the Raman beams was checked by

interfering the two Raman beams and observing phase stability well below 1 Hz.

The cause of the decoherence was indicated by the absorption image in figure 4.17

(b), which is an 18 ms TOF image of the Raman-coupled BEC without a Stern-Gerlach

field applied. We observe two satellite lobes above and below the BEC, the position of

which is not due to any magnetic gradient acting on different magnetic sublevels. The

position of these lobes is consistent with atoms receiving a momentum impulse of ±2~k
during the Raman coupling, hence the co-propagating Raman beams were able to Bragg

scatter some fraction of the BEC. This is consistent with the Raman beams interacting

with a weak counter-propagating reflection, enabling coupling to different momentum

states. In addition we observed significant heating and atom loss when applying Raman

1Thorlabs P3-630PM-FC-10
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Figure 4.17: Plots of both incoherent and coherent Raman Rabi oscillations: (a) Strongly
damped, incoherent, Raman Rabi oscillations are observed due to weak counter-propagating
reflections coupling different momentum states. (b) 18 ms TOF horizontal absorption image
of the BEC following Raman coupling. The position of the small clouds above and below
the BEC are consistent with the momentum states ±2~k. Such momentum states are due to
Raman coupling from the Raman beams and weak counter-propagating reflections from the
vertical imaging camera, and are absent if the camera path is blocked. (c) Coherent Raman
Rabi oscillations with the vertical camera reflection blocked. The data is fitted to a three-state
solution of the rate equations, from which we extract the two-photon Rabi frequency, Ω = 20
kHz, and the two-photon detuning, δ = 1.8 kHz.

coupling near resonance. The problem was solved by placing a shutter in front of the

vertical imaging camera which was the main source of the reflection. A short-pass filter

(λ < 790) nm was also placed in front of the camera to transmit imaging light but

block Raman light which would otherwise saturate the camera.

The resultant Raman Rabi oscillations are shown in figure 4.17 (c). Without

coupling to different momentum states we now observe coherent population transfer

over multiple cycles. Fitting this data with the appropriate three state model, we

find a Rabi frequency of ≈ 20 kHz and a two-photon detuning of ≈ 1.8 kHz. Similar

coherent transfer is observed for our Gaussian and LG setup with lower Rabi frequency,

permitting use of a coherent π pulse to impart angular momentum to the BEC.
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4.4 Detecting angular momentum

Following our rotation procedure we transfer over 90% of the atoms to the |1, 0〉 state,

which flows around the ring trap with orbital angular momentum `~ per atom. Fun-

damentally though, the atomic density observed is identical to the stationary case,

and therefore measuring the angular momentum present can be challenging. This

is especially true when considering the energy associated with the rotation is Er =

(`~)2/(2mR2), where m is the atomic mass, and R is the radius of the ring. For our

typical trap parameters (R = 12 µm) this only corresponds to Er/h ≈ 0.4`2 Hz.

Circulation in a BEC is usually detected by a kinematic method, where an ab-

sorption image is taken at long TOF and density dips are observed associated with

vortices. The characteristic size of a vortex in trap is equal to the healing length,

ξ =
√

1/8πna as derived in (2.64), which is typically less than a µm, and hence cannot

usually be resolved by an in situ image. By allowing the condensate to freely expand

before imaging, the velocity associated with the azimuthal flow around a vortex core

causes the hole to expand to a size above imaging resolution. The presence of a vortex

in a condensate has also been detected by measuring the resultant precession in the

axes of the quadrupole mode in the direction of the circulating vortex flow. The circu-

lating velocity breaks time-reversal symmetry and splits the two otherwise degenerate

modes which contribute to quadrupole oscillations. The magnitude of the splitting is

dependent on the angular momentum present in the system and can be directly inferred

from the rate of precession of the mode [38]. The phase winding present in a rotating

condensate has also been directly observed using matter-wave interference [30, 33].

Here we detect the circulation present in our ring BEC by both a matter-wave in-

terference method, and by observing the formation of density dips at long TOF. Due

to the necessity of a non-rotating, reference state for the interferometric method, the

quantitative studies on persistent currents presented in Chapters 5 and 6 exclusively

use the kinematic detection method.

4.4.1 Matter-wave interference

The procedure for converting the phase winding to a density modulation by matter-

wave interference is shown in figure 4.18 (a). The initially stationary ring BEC in the

|1, 1〉 state is coherently transferred to an equal superposition of the rotating |1, 0〉 and

stationary |1, 1〉 states by a Raman π/2 pulse. A subsequent RF π/2 pulse mixes the

two states, creating an equal superposition of stationary and rotating atoms in each

spin state. The resultant interference creates a density modulation, with the number

of interference peaks equal to `. Imaging just one of the spin states using a microwave

transfer to the F = 2 state, we obtain the absorption images shown in figure 4.18

(b), confirming the phase imprinted by the LG plus G Raman transfer. The density

modulations of the two spin states are π out of phase, hence imaging the total density
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of both states by repumping to the F = 2 state, we only observe the initial smooth

density profile.

We can quantitatively explain this procedure by describing the BEC in a coherent

superposition of internal states 1 and 2, labeled by the two-component vector

Ψ̄(θ) =

(
Ψ1(θ)

Ψ2(θ)

)
, (4.26)

which for our initial state is

Ψ̄0(θ) =
1√
2π

(
1

0

)
. (4.27)

We can then define the Raman π/2 and RF π/2 operations by the matrix operators

U(Raman),π/2 =
1√
2

(
1 e−`θ

e−i`θ −1

)
, and U(RF),π/2 =

1√
2

(
1 1

1 −1

)
(4.28)

respectively. With this notation the final state of our interference protocol is

Ψ̄(θ) = U(RF),π/2U(Raman),π/2Ψ̄0(θ) (4.29)

=
1

2
√

2π

(
1 + e−i`θ

1− e−i`θ

)
. (4.30)

The final density distributions of the two spin states are then given by

n1(θ) = |Ψ1(θ)|2 =
1

2π
sin2(`θ/2) (4.31)

n2(θ) = |Ψ2(θ)|2 =
1

2π
cos2(`θ/2), (4.32)

in agreement with our experimental findings. In principle one can include a delay

between the Raman and RF pulses. The number of density fringes is then a measure

of the circulation which persists beyond the delay time, and the observed precession

of the fringes is sensitive to rotation of the frame of reference, acting as a Sagnac

interferometer. In reality we observe a rapid degradation of the interference pattern

for delays longer than 50 ms due to the presence of two effectively counter-rotating

spin states. This is true even with the inclusion of an “echo” RF π pulse at half the

delay time, which swaps the spin states and should negate the accumulated relative

phase between the two states1. This is in contrast to the calculations of [111] where the

fringe pattern is predicted to be stable due to the relatively close inter and intra-state

scattering lengths. The effect of having two spin states in the ring is discussed further

in Chapters 6 and 7.

1Exact cancelation of the accumulated phase is only expected in the single mode approximation
where only the zero energy mode contributes [148]
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Figure 4.18: Interferometric detection of the imprinted phase winding: (a) Interference pro-
tocol for interfering a rotating BEC with a stationary BEC. A Raman π/2 pulse coherently
transfers only half the population into the rotating |1, 0〉 state. A subsequent π/2 RF pulse,
which carries no angular momentum, mixes the states so that in each spin state we get an inter-
ference of rotating and non-rotating atoms. This matter-wave interference converts the phase
winding into a density modulation in each spin state, with the number of density peaks equal
to `. (b) Absorption images of the original ring density profile and the resultant pattern in the
|1, 1〉 state following the interference protocol for ` = 3, 5, 10, and 15. Bottom plots show the
atom density of the interference fringes as a function of the azimuthal coordinate, normalised
to the original atom density.

4.4.2 Kinematic detection in time-of-flight

As discussed in Section 2.4.3, the flow velocity about a vortex scales as 1/r and hence

is associated with an angular momentum barrier, ~2`2/2mr2, leading to a density sin-

gularity along the vortex core. Due to the mean-field energy of the cloud in trap,

the atoms can climb this 1/r2 potential and acquire kinetic energy as tangential flow

velocity. When the BEC is released in TOF the mean-field energy is given up to ballis-

tic expansion, however the angular momentum barrier due to circulation persists and

causes the density dip due to the vortex core to expand and become resolvable. Nu-

merical simulations of such expansion from a rotating annular BEC are done in [149],
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Figure 4.19: Kinematic detection of circulation in TOF expansion: (a) By ramping down the
LG beam and transforming to the simply connected sheet trap, the BEC pushes up against the
angular momentum barrier. The size of the vortex hole, ξ, is set by equating the interaction
energy, given by µ, and the kinetic energy associated with rotation, given by ~2`2/2mr2. Re-
moving the trapping potential causes atoms to move away from the angular momentum barrier
and a central hole to form in TOF, the size of which depends on `. (b) Top view absorption
images of non-rotating (left) and ` = 3 rotating (right) BECs after 29 ms TOF expansion from
the reconnected trap in (a). We use the fitted radius, R, to quantify the rotation of the cloud.
(c) Calculation of central density hole radius versus TOF for the circulation states ` = 3 (blue),
` = 2 (green), and ` = 1 (red). This calculation assumes ballistic expansion of the cloud and
calculates the minimal radius at which the density is non-zero. (d) Azimuthally averaged radial
density profiles of the images in (b) for both the rotating (red) and non-rotating (blue) clouds.
This illustrates the sharp density cutoff due to rotation, which is in reasonable agreement with
the cutoff predicted by our simple calculation, R`=3, indicated by the dashed black line.

where the size of the hole formed in TOF is shown to be dependent on `, and hence

can be used to detect the rotational state of the condensate in the trap.

In our ring trap the atoms are held far from the axis of rotation by the ring trapping

potential and hence have a low azimuthal flow velocity. For our typical parameters of

ring radius rM = 12 µm, and circulation ` = 3, the flow velocity is vs = `~/mrM ≈ 0.18

mm/s. When the atoms are released from the ring trap, the interaction energy is con-

verted to kinetic energy and the atoms expand in all directions, including inwards

towards the axis of rotation. The initial radial velocity dominates over the initial tan-

gential velocity associated with any rotation present, allowing atoms to approach very

close to the vortex core. While the density singularity at the centre never vanishes, this
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method requires very long TOF before the density dip due to rotation is observable.

In order to resolve the density hole from rotation we find it necessary to first grad-

ually remove the LG beam and transform the trap into a simply-connected geometry

formed by the sheet trap alone. This has the advantage of bringing atoms close to

the axis of rotation and increasing the azimuthal flow velocity. It also reduces the

mean field energy, reducing the expansion velocity upon release, and since the vertical

confinement now dominates over the horizontal confinement, the mean field energy is

predominantly released in the vertical direction. The LG beam is ramped off slowly

over about 100 ms, before the sheet beam is turned off a few ms later. As discussed in

Section 4.5, once the ring trap is removed the rotating state is no longer protected and

eventually decays. To gain an accurate measure of the angular momentum, the BEC

is only briefly held in this reconnected trap before the vortices have a chance to break

apart to lower-angular momentum states. The BEC is then imaged at 29 ms TOF along

the axis of rotation. Figure 4.19 (b) shows a typical absorption image of a non-rotating

BEC, and a BEC transferred to the rotating state using ` = 3. The non-rotating BEC

has a density maximum at the centre as expected, whereas the rotating BEC exhibits

a central density hole. We fit the high density ring surrounding this hole to an ellipse,

and quantify the rotation of the cloud by the geometric mean of the major and minor

axes, R. The circular symmetry of the density ring in TOF is found to be strongly

dependent on the alignment of the ring trap with the sheet trap. We therefore align

the LG beam with the sheet trap minimum looking at the density ring in TOF, with

the aim of having circularly symmetric density.

Figure 4.19 (a) illustrates a BEC held in the reconnected sheet trap with a centrifu-

gal barrier at the origin due to rotation with ` units of circulation. We can obtain a

reasonable estimate of the radius of the density hole due to rotation at long TOF by

considering the expansion as ballistic, and neglecting the effect of interactions during

TOF. To first order this is correct since the vertical trapping frequency in the sheet

dominates over that in the plane, and therefore nearly all the mean field energy quickly

goes into the vertical expansion of the cloud. Equating the force due to the potential

gradient and the radial acceleration, we obtain the equation of motion for atoms at

position r
d2r(t)

dt2
=

~2`2

m2r3(t)
. (4.33)

Solving this for the initial conditions, r(t = 0) = r0 and dr(t)/dt = 0 gives

r2(t) = r2
0 +

~2`2

m2r2
0

t2. (4.34)

To illustrate the density profile we might expect to evolve during TOF we consider the

trajectory of the point in the trap, r∗, which travels the shortest distance from the axis
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4.5 Vortex dynamics in a connected geometry

of rotation during time-of-flight, t. This if found by solving dr(t)/dr0 = 0:

r∗ =

(
~2`2t2

m2

)1/4

. (4.35)

In our simple picture, atoms located at r∗ in the trap end up closest to the axis of

rotation in TOF, with all other positions in-trap travelling further from the origin.

Using our expression for r∗ as the starting point r0 in equation (4.34), we obtain the

radius, R`(t) =
√

2r∗, of the density hole in TOF within which the density is zero due

to rotation. We therefore find that the area of the hole formed in TOF is proportional

to the angular momentum state of the atoms, R(`)2 ∝ `. The radius R(`) is plotted

as a function of t for the circulation states ` = 3, 2 and 1 in figure 4.19 (c). From this

we anticipate that at 29 ms TOF the zero-density hole will have a radius 6.5 µm, 9.2

µm, and 11.2 µm for the circulation states ` = 1, 2, and 3 respectively. Calculating

the ballistic expansion of the initial Thomas-Fermi density for a BEC in the sheet plus

centrifugal barrier potential shown in figure 4.19 (a), we find that the density in TOF

monotonically increases with decreasing radius, until reaching the cutoff value R`(t).

In figure 4.19 (d) the azimuthally averaged radial density profiles of the rotating

and non-rotating clouds at 29 ms TOF are shown. The black dashed line indicates

our calculated density cutoff, R`=3 = 11.2 µm, which is in surprisingly close agreement

with the inflection point of the profile. Due to the effect of interactions during TOF

which we neglected, this cutoff is rounded off and the peak density is actually shifted

to a slightly larger radius than R`. The size of this discrepancy is empirically found to

be a function of atom number, with the value of the peak radius for a given circulation

state decreasing with atom loss, and tending towards values in agreement with R`.

4.5 Vortex dynamics in a connected geometry

In the next chapter we unequivocally show that superflow in a ring shaped BEC is

fundamentally stable and protected from decay due to the trapping geometry. We

first conclude this chapter with a brief discussion of vortex dynamics and decay in a

simply-connected BEC. Vortices are excited states of motion and therefore energeti-

cally unstable towards relaxation to the ground state where the condensate is at rest.

However, as discussed in Section 2.4.3, quantisation of circulation constrains the decay,

and a vortex in a BEC cannot simply fade away by continuously dissipating its en-

ergy. As calculated in equation (2.97) the energy of a multiply charged vortex scales as

the square of the circulation, and therefore it is energetically preferable for a vortex of

charge q to break up into q singly charged vortices. It has been shown both numerically

[150] and experimentally [89] that multiply charged vortices in a harmonic potential

are not energetically stable. Multiply quantised vortices are found to decay into singly

quantised vortices and transfer their kinetic energy to excitation modes. Such insta-
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bility is referred to as dynamic instability and is driven by atomic interactions even at

zero temperature, and is different from dissipation due to interactions with the thermal

component [151]. The timescales of such dynamic instabilities is fairly short, quickly

establishing the large vortex lattices observed in [31, 32].

Such multiply charged vortices can become stable under sufficient rotation of the

system [152] or by the presence of localised pinning potentials [90]. For pinning locations

of sufficient size, the energy reduction of localising several vortices at the density dip

and creating a ‘giant’ vortex state can outweigh the cost of having multiple circulation.

Such multiply quantised vortices have been observed at pinning sites in superconduct-

ing systems [153] and BECs [91]. Equivalently, the large density hole we measure in

TOF in figure 4.19 (b) is essentially a multiply quantised vortex which forms due to

the pinning potential of our ring trap, where the vortices are pinned inside the ring

trap where the density vanishes. In [154], giant vortex states are prepared by applying

a blue-detuned laser to a vortex aggregate of many singly charged vortices which pins

many vortices creating a giant vortex core of up to 60 phase singularities. Other pro-

posals for the formation of stable multiply charged vortices involve rapid rotation of a

BEC in a high power-law trap [150, 152].

A singly charged vortex is dynamically stable and therefore the vortex state can

only decay by annihilation with another vortex of opposite circulation or in the presence

of dissipative processes. At finite temperatures the vortex scatters from thermal exci-

tations, transferring energy from the vortex to the thermal cloud causing the vortex to

spiral outwards towards the border of the condensate where it then decays to elementary

excitations [155]. There have been several experimental studies on vortex dynamics,

including single vortices [156], small clusters of co-rotating vortices [89, 157, 158], and

vortex dipoles [141] which are of particular interest for understanding the Berezinskii-

Kosterlitz-Thouless (BKT) transition [159].

In figure 4.20 we present our observations of the decay of a multiply charged vor-

tex held in a reconnected trap with initial charge q = 5 and q = 3 for (a) and (b)

respectively. We first prepare superflow in the ring trap using the rotation procedure

explained in Section 4.3.1, using LG beams of different azimuthal modes ` = 5 and

` = 3 for the two sequences. The LG beam is then ramped down over 3 seconds and

the BEC is held in the simply connected sheet trap only. In the ring trap, motion of

vortices through the BEC has an associated energy cost, hence the circulating state

is metastable and does not decay. Once the ring trap is removed this protection is

also removed and the lowest energy configuration is for the vortices to redistribute

themselves within the BEC. For both sequences the initial multiply quantised vortex

of charge q = ` takes about 5 seconds to break up into ` singly charged vortices, after

which these vortices move to the BEC edge and decay over the following 10 seconds or

so. The dynamics timescale for vortices to break apart and the dissipative timescale

we observe for vortices to decay are both quite long compared to those reported in
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Figure 4.20: Vortex dynamics in reconnected sheet trap: For both sequences we prepare
superflow in the ring trap with ` units of circulation, where ` = 5 and ` = 3 for (a) and (b)
respectively. The LG beam power is then immediately ramped down over 3 seconds and the
rotating BEC is held in just the sheet trap for a variable time before we absorption image at
29 ms TOF. (a) The giant vortex with charge q = 5 persists for a couple seconds but quickly
distorts in shape. Within 7 seconds the giant vortex has completely broken up into 5 singly
charged vortices. Over the next 10 seconds the vortices gradually migrate to the cloud edge
and dissipate due to interactions with the residual thermal atoms. The final single vortex is
found to typically persist for over 20 seconds. (b) The same sequence is repeatedly for a giant
vortex with initial charge q = 3. The dynamics and decay in this case occur in a similar fashion
and timescale to that observed for the q = 5 vortex.

[89, 158]. Several of the images exhibit pleasing symmetry which we could interpret as

the formation of stable vortex structures as reported elsewhere [157, 158], however this

would require further statistics or real-time imaging as done in [156] to confirm.

For both cases we observe images where the giant vortex has broken up into singly

charged vortices, the number of which equals the initial circulation of the BEC, `. Apart

from being a quasi-random process, this is not a true measure of the angular momen-

tum state, L, of the BEC like the kinematic detection method in Section 4.4.2. As

explained in equation (2.96), L for a cylindrically symmetric BEC containing a vortex

is only equal to ~ per atom if the vortex is on the axis of symmetry. If the vortex moves

towards the BEC edge, although the circulation is still quantised, L decreases and is

dependent on the vortex position. Both the number of vortices and their position are

dependent on L, so simply counting phase singularities in TOF cannot unambiguously

tell us the angular momentum state of the BEC in the ring.

4.6 Conclusion

This chapter has outlined the experimental implementation of our ring trap, and the

procedure we use for both preparing and detecting angular momentum states. Partic-

ular care has been taken to explain the aspects of the experiment we found integral to
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preparing a state of well defined and known circulation. This forms the backbone for

our studies on persistent currents, in which we always infer any decay events by assum-

ing the initial state of the BEC. We have provided a brief overview of ring traps and

their uses in ultracold gases, and have illustrated their significance to the preservation

of persistent currents by observing vortex dynamics and decay in a simply connected

trap. In the following chapters the ring trap is kept on and the methodology explained

above is used to prepare persistent currents and study their stability.
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Chapter 5

Quantised decay of persistent currents

Having discussed how we prepare a persistent current of well defined initial angular

momentum in Chapter 4, in this chapter we study the stability and decay of such

superflow. To clarify our discussion we introduce the parameter q, where the phase of

the BEC wave function, Φ(r), winds around the ring an integer multiple, q, times 2π:

Φ(r, θ, z) = Φ(r, z)eiqθ, (5.1)

where we assume azimuthal symmetry of the condensate density. This is to distinguish

q from `, the phase winding of the LG beam which forms our ring trap, and which is

initially imprinted on the condensate wavefunction. Hence at t = 0 the phase winding

of the condensate and LG beam are equivalent, q = `, but as the superflow decays q

will decrease, and it is this evolution which we study.

The physical origin of supercurrent metastability is qualitatively illustrated in fig-

ure 5.1 (a). For N atoms held in a ring trap, the angular momentum for any atom

is quantised, however the average angular momentum per particle in general need not

be. For a superfluid gas, the presence of the condensate means that such quantisation

is energetically preferred, and hence we can map the rotational state of a ring shaped

superfluid onto the parabolic washboard landscape in figure 5.1 (a) which depicts the

energy E of the superfluid system for different fixed values of the total angular mo-

mentum L1. The local minima of E correspond to topologically distinct metastable

states with L/N = q~. A direct ∆q = 1 transition between two such minima involves a

discontinuous 2π phase slip in the condensate wave function, occurring when a singly

charged vortex crosses the annulus. The energy barrier between two adjacent minima

corresponds to the barrier felt from a vortex core when trying to move toward a region

of higher density, arising from the nonlinearity of the GPE.

The origin of such metastable energy minima at integer q can be demonstrated

using a simple toy model presented in [13]. Here we consider a weakly interacting Bose

gas at T = 0 trapped in a narrow annulus with thickness much smaller than its radius

R. If we only considers occupation of the non-rotating state |0〉, and the state with an-

gular momentum ~ per particle, |1〉, the energy of this system has the familiar Noziéres

1At nonzero temperature the same picture holds but with E replaced by the free energy.
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5.0 Quantised decay of persistent currents

Figure 5.1: Origin of metastability and decay of supercurrents: (a) Energy landscape of a
ring-shaped superfluid. Local minima correspond to metastable states with quantised angular
momentum per particle, L/N = q~. Energy barriers correspond to placement of a vortex
within the superfluid, reducing the total angular momentum and modifying the condensate
wavefunction. (b) Decay between the discrete q states involves a vortex-mediated phase slip,
illustrated here for q = 5→ 4.

form [12]

E =
~2N1

2mR2
+

g

2V
(N2

0 +N2
1 + 4N0N1), (5.2)

where V is the system volume, R is the radius of the ring trap, g is the strength of

contact interactions (2.32), and N0 and N1 are the number of particles in the |0〉 and |1〉
states respectively. Hence in general, fragmentation of the condensate is energetically

inhibited due to interactions, leading to energy minima at quantised angular momenta

for N1 = N and N0 = N , similar to that shown in figure 5.1 (a). For suitably weak

interactions the energy minimum at N = N1 disappears and the system cannot support

persistent currents, as was shown in [160, 161]. The criteria for stability of q = 1

supercurrents is then simply given by

∂E

∂N1

∣∣∣∣
N1=N

< 0 (5.3)

~2

2mR2
<
gN

V
(5.4)

vs <

√
2gN

mV
, (5.5)

where we have used the form of the superflow velocity vs = ~/mR. From the expression

for the sound speed in a uniform system (2.62) c =
√
gN/mV , we see, apart from

a factor of
√

2, this takes the familiar form of the Landau criterion with a critical

velocity set by the speed of sound, vs < c. Such a simple calculation captures the

behaviour of our system surprisingly well, but we note that even at zero temperature,

due to interactions one should really consider the population of many higher angular

momentum rotation states.

More generally, a superfluid can, in principle, also shed angular momentum in ways

that break the L/N quantisation. Such a proposed decay mechanism is the formation

of grey solitons which allow a continuous change in angular momentum [162]. Another
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way is condensate fragmentation, where the BEC splits into two or more condensates

with differing angular momenta per particle, however such a mechanism is expected to

be suppressed due to the factor of 2 in the interaction energy arising for distinguishable

particles. The dominant superflow decay mechanism depends on the system’s geometry,

temperature, and the strength of interactions. Associated with this decay mechanism

is a critical velocity, vc, where for flow speeds vs > vc, the superflow is unstable in

the thermodynamic sense and decay occurs inevitably and on the millisecond scale. In

contrast for vs � vc the decay is strongly suppressed and the metastable superflow

can be almost perfectly stable, as for example observed in bulk superconductors. In

between these two extremes, metastable superflow should persist for much longer than

the characteristic microscopic time scale of the physical system, but rare stochastic

decay events can still occur through quantum or thermal fluctuations [82–84].

In this chapter we study the supercurrent decay of condensates initially prepared

in the q = ` = 3 state. We observe q = 3 superflow persisting for up to a minute in

a multiply-connected trap (Section 5.3) and explicitly show that the supercurrent is

indeed quantised (Section 5.2). The persistent current therefore decays in a cascade

of quantised decay steps which unambiguously confirms that 2π phase slips are the

supercurrent decay mechanism. We find that the critical velocities for different q states

quantitatively agree with numerical simulations (Section 5.5). Our ability to resolve

quantised rotational states opens the possibility to study the dynamics of phase slips,

allowing us to observe both rapid q → q − 1 decay events for vs(q) ≥ vc(q), and

stochastic phase slips for vs < vc (Section 5.6).

5.1 Previous studies on supercurrents

The persistent current in our condensate is analogous to electrical current flowing with-

out resistance in superconductors, and dissipationless flow of superfluid 4He in a toroidal

container. The stability and decay of supercurrents have long been studied in 4He su-

perfluids and thin-wire superconductors, and as yet are still not fully understood. Much

of the difficulty stems from the existence of several breakdown mechanisms, the rela-

tive importance of which depends strongly on the system parameters. In superfluid

helium experiments in a toroidal geometry, the critical velocities observed in practise

were often significantly less than the Landau value [163]. It is suspected however, that

in most cases this was due to the presence of a tangle of vortices which formed during

the quench through the BEC transition. For superfluid 4He flow through small orifices,

Anderson predicted that dissipation can occur when a quantised vortex passes across

the orifice [26]. If the vortex crosses all the flow lines passing through the orifice, the

quantum phase difference across the hole changes by 2π. Such phase slips have since

been observed in several experiments [27, 88, 164]. One therefore anticipates the onset

of such phase slips is given by the Feynman critical velocity, vFc , (2.103) derived in Sec-
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tion 2.4.3, which gives the velocity above which vortex rings can enter the flow channel.

However, vFc neglects the nucleation mechanism and subsequent trajectory of such vor-

tex rings and cannot give quantitative agreement with experimental observations [27].

In addition, experimental studies of critical velocities for phase slips in narrow channels

for high flow velocity [27, 88, 164] also show a temperature dependence which cannot be

explained by the Feynman criteria. In this regime the normal component is negligible,

and therefore it is proposed that the dependence arises due to the energy barrier for

nucleating vortices. Hence as the temperature decreases the effective critical velocity at

which decay occurs is observed to increase as the rate at which vortices are thermally

nucleated decreases. Below about 200mK the observed critical velocity becomes almost

temperature independent, and quantum tunneling dominates the phase-slip nucleation

process [88]. The fundamental theoretical challenge is then understanding the nucle-

ation process, and as yet no theory connects all these observations [165–167].

Phase slips in the superconducting order-parameter have been shown to cause resid-

ual electrical resistance in superconducting nanowires [84, 85]. In analogy to superfluid
4He, at higher temperatures phase slips between current-carrying states occur though

the process of thermal barrier-crossing by the order-parameter field [81], whereas at

low temperatures quantum phase slips occur by topological quantum fluctuations of

the superconducting order-parameter field [84]. Such superconducting nanowires have

important applications for realising qubits [168], and the use of coherent quantum phase

slips to build a current standard has been proposed in [169].

Persistent currents in annular BECs clearly offer a complementary route to further

understanding these experiments on superfluid 4He and superconducting nanowires. In

contrast to liquid helium, since BECs are dilute and relatively weakly interacting, they

are often described very well by the mean-field GPE which provides a reliable theoret-

ical model for studying the instability mechanisms and dynamics. Prior to this work,

the only realisation of supercurrents in a BEC was achieved in [99, 100], where q = 1

superflow persisting for up to 40 s was observed, and studies of flow through a weak link

created by a potential barrier revealed a well defined superflow critical velocity vc. The

observed vc was found to be consistent with the Feynamn estimate vFc , from which it

was suggested that the dominant supercurrent decay mechanism was a vortex-induced

phase slip, analogous to decay in superconducting and liquid 4He experiments.

Our work extends these studies to multiply charged superflow (q > 1). This allows

us to prove supercurrent quantisation, and from this, we unambiguously confirm phase

slips as the decay mechanism, independent of any calculations. We calculate the flow

velocity at decay and show it to be consistent with the order of magnitude Feynman

estimate. Further to this, by explicit calculation of the excitation spectrum of the ring

BEC we find quantitative agreement with a different critical velocity, which more accu-

rately predicts the decay in our system. These calculations suggest decay by formation

of vortex-antivortex pairs due to phonon-like excitations. Our use of q > 1 superflow
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also opens the possibility to study dynamics and correlations between phase slip events.

5.2 Supercurrent quantization

To demonstrate the quantised nature of the supercurrent decay we initially prepare

the system in the q = 3 rotational state using the protocol explained in Chapter 4.

Following the transfer of orbital angular momentum to the BEC, we then increase the

power of the LG beam by a factor of 2.4 over 3 seconds to ≈ 200 µW. From this point

we then hold for various times and then release the cloud and absorption-image it after

29 ms of TOF. We detect the angular momentum state of the condensate by fitting

the radius of the density ring, R, due to rotation, as explained in Section 4.4.2. The

purpose of increasing the ring power is to increase the significance of the residual az-

imuthal roughness due to imperfections in the profile of our LG beam. The potential

barriers due to roughness will scale linearly with LG intensity, ILG, whereas the chem-

ical potential, µ, only scales as ILG
1/4 through the radial trapping frequency, hence

the superflow stability decreases with increasing LG power. This has the advantage of

significantly reducing the supercurrent lifetime to below the atom number decay time.

As discussed in Section 4.4.2, the fitted hole radius in TOF, R, has a weak dependence

on atom number, N , so increasing the ring power minimises this effect, providing us

with the cleanest signal in which to observe the quantised nature of the supercurrent.

In figure 5.2 (b) we plot the evolution of the radius R with time after the superfluid

was set into rotation. The quantisation of R, and therefore of the angular momentum

of the condensate, is strikingly obvious, and we can assign a q state to each individual

image with high fidelity. To further illustrate the quantised nature of the superflow,

in figure 5.2 (c) we plot a histogram of R values, from which we clearly identify three

separate peaks corresponding to the three states of q = 3, q = 2, and q = 1. The

shaded colour backgrounds indicate our q-value assignments, matching the data-point

colours in the scatter plot. Sample absorption images of the four allowed rotation states

are shown in figure 5.2 (a), illustrating that the quantisation of supercurrent states is

sufficiently evident as to allow the q states of individual images to be called by eye.

We also mention that we find such quantisation in several thousand other images taken

under different experimental conditions.

We consider the quantisation of the supercurrent decay the primary experimental

evidence for vortex-induced phase slips as the decay mechanism. Condensate fragmen-

tation or collective excitations such as solitons would break the quantisation of R [162],

while individual particles which break away from the superflow would gradually fill up

the hole in the centre of the expanding cloud; we see no clear evidence of this occurring.

Observation of quantised decay events is also used as experimental proof of phase slips

in liquid helium experiments [27, 88, 164], and benefits from not relying on any critical

velocity calculations.

117



5.3 Long-lived superflow

Figure 5.2: Quantised superflow decay: A superfluid prepared in the q = 3 state is held
in a ring trap of depth Vr ≈ 4µ. (a) TOF absorption images of the respective q = 3, 2, 1,
and 0 states. (b) Top panel: radius R as a function of hold time t. The R values fall into 4
distinct bands corresponding to (top to bottom) q = 3 (blue), 2 (green), 1 (red), and 0 (black).
Bottom panel: atom number, N versus t for the same data set. (c) High-contrast histogram
of the measured R values confirms that we can assign a q value to each individual image with
near-unity fidelity. The shaded backgrounds indicate our q-value assignments.

The initial q = 3 state is observed to be fundamentally stable for approximately

2 seconds, corresponding to ≈ 5 complete revolutions of the condensate. In Section

5.3, by using a low power LG beam, we show that this metastable state can be ex-

tended to over a minute. We therefore conclude that the decay of the supercurrent is

brought about by the gradual decay of N plotted in the bottom panel of figure 5.2 (b).

This is discussed further in Section 5.5 as the gradual loss of atoms bringing about the

condition vs > vc. The broad q = 2 and q = 1 plateaus in figure 5.2 (b) show that

the intermediate 0 < q < ` states are metastable even after the supercurrent decay is

initiated by the first phase slip. In the analogy with a particle moving in a washboard

potential as in figure 5.1 (a), this corresponds to a strongly damped motion: when the

system escapes from a local energy minimum, it gets trapped in a new local minimum

rather than rapidly decaying to the q = 0 ground state.
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Figure 5.3: Long-lived q = 3 superflow: R is plotted as a function of hold time in a shallow
ring trap, showing persistent current for longer than a minute. The blue dashed lines are guides
to the eye, indicating the bands of R values corresponding to different q states. The inset shows
the decaying BEC atom number, N , for the same data set: the solid line is a double-exponential
fit to the data with characteristic decay times of 2.5 s and 40 s corresponding to the rate of
three-body decay and background losses respectively.

5.3 Long-lived superflow

Having demonstrated the quantised nature of supercurrents, we now test the limits of

supercurrent metastability in our setup by performing the same experiment in a very

shallow ring trap. Following the Raman transfer we now reduce the power of the LG

beam by a factor of 2.47 over 3 seconds to ≈ 30 µW, such that the depth of the ring trap,

Vr, is approximately equal to the chemical potential, µ. This ensures the trap is still

multiply-connected, protecting the system from vortex dynamics. Since the roughness

of the trapping potential scales with Vr, reducing the ring depth to ≈ µ results in the

smoothest trap we can achieve. This makes the condensate density almost perfectly

uniform around the ring and minimises the probability of weak links where the local µ

diminishes and phase slips are more likely.

In figure 5.3 we show the evolution of R for a superfluid prepared in the q = 3 state

and rotating in a shallow ring trap. The non-zero superflow (R > 0) now persists for

more than a minute and decays only once the condensate number itself has decayed to

about 30% of its starting value. As discussed in Section 4.4.2, the radius R shows a

weak dependence on the atom number, N , making the supercurrent quantisation less

striking than in figure 5.2, where the fractional variation of N over the relevant time

scale is smaller. However, we can still see that the R values fall into distinguishable

bands corresponding to the q = 3, 2, and 1 states. This allows us to conclude that the

q = 3 state is perfectly stable for ∼ 40 seconds and can persist for up to a minute. We
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confirm that the slow bending of the q bands with time is just a consequence of the

weak dependence of R on the decaying N (for fixed q) by preparing the initial q = 3

state with deliberately reduced initial atom number.

It’s worth mentioning at this point that in subsequent experiments carried out with

greater care and understanding, the q = 3 state could be made perfectly stable for up to

a minute with no observable decay. As moreover will be discussed in Chapter 6, by using

an RF π pulse to flip the BEC back to the |1, 1〉 state following the Raman transfer,

we observe the q = 3 state to be perfectly stable for up to 90 seconds, equivalent to

over 200 revolutions of the condensate. By this point the condensate number decays to

approximately 12% of its initial starting value. These results demonstrate the extreme

metastability of such states, persisting far longer than any relevant timescale of the

system, and limited only by the decaying atom number. In similar experiments in

higher ` traps, the larger trap volume due to the larger ring radius reduces the local

condensate density, and hence reduces the stability of superflow. Nevertheless, even for

` = 10 we can still observe superflow persisting for up to 20 seconds before any decay

events occur.

5.4 Superflow velocity

Having identified the decay mechanism as vortex-induced phase-slips, we now turn to

a quantitative study of the dynamics of the supercurrent decay for different superflow

speeds. Generally as the number of atoms in a rotating BEC decays with time, super-

fluidity becomes less robust. In the spirit of the Landau criterion, we identify this with

the flow velocity approaching the critical velocity, vs → vc. Once vs equals the critical

velocity for a given decay mechanism, the energy barrier to create such an excitation in

the moving frame of the condensate vanishes, accompanied with the onset of viscosity.

In our setup, the relevant decay mechanism has been shown to be a phase slip which

reduces the angular momentum of the condensate by N~, reducing the flow velocity vs

back below vc. As a result we anticipate a staircase of q values, where atom loss brings

about the condition vs(q) > vc, where vs(q) is the flow velocity of a given q state. This

causes a ∆q = −1 phase slip, reducing the flow velocity to below the critical velocity

for further phase slips, vs(q − 1) < vc, and hence the q − 1 state persists until further

atom loss brings about the condition vs(q − 1) > vc, and the next phase slip. . .

To confirm such a picture we need to calculate the flow velocity of the BEC in a

given q state for our ring trap. In an ideal case of a perfectly smooth ring trap with

cylindrical symmetry the flow velocity is azimuthally uniform around the ring, and

given by the condition for quantised circulation,

vs(r) =
~q
mr

θ̂. (5.6)
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In our real trap, variations in the local density result in changes in the flow veloc-

ity. While the condition for quantised circulation must always hold, the circulation

is achieved by a spatially varying velocity. In general, calculating the dynamics of a

superfluid is a difficult problem. This difficulty stems from the fact that the fluid is

composed of two components with a total momentum density given by

j = ρsvs + ρnvn. (5.7)

As was shown in Section 2.4.2, the density of the two components depends on the

temperature, excitation spectrum, and relative velocity of the two components, vs−vn.

A complete discussion of how to go about solving such a problem is given in [170]. Here

we make the simplifying assumption that the normal component can be ignored, and

hence any particle flux is due to the motion of the superfluid only. This assumption

is based on the fact that our condensate fraction is typically over 85%, and secondly,

we are only interested in the long-time steady state of the system at which point the

normal component can be considered at rest. Using these assumptions we obtain the

zero temperature hydrodynamic equations [170]

∂n

∂t
+∇ · (nvs) = 0 (5.8)

m
∂vs
∂t

+∇
(
µ+ Vext +

1

2
mv2

s

)
= 0. (5.9)

The first of these equations is simply the conservation of particle flux, where here we

consider n = ns. The decay events we are interested in occur several seconds after the

initial transfer of angular momentum to the system, hence it’s sufficient to only find the

steady state solutions. This assumes that the gradual atom loss is sufficiently slow that

we may consider the properties of the system to be given by those of the equilibrium

state. We also make the simplifying assumption that the energy associated with the

flow velocity in (5.9), is negligible compared to the mean field energy. From this we

obtain the two relations

vs(r) ∝ 1

n(r)
(5.10)

µlocal(r) = µ0 − Vext(r), (5.11)

where µ0 is the global chemical potential for the system. The first of these relations

simply states that to conserve particle flux, the flow velocity in regions of lower density

must be higher than that in regions of higher density. The second relation is equivalent

to the local density approximation, relating the local chemical potential and hence

density, to the external trapping potential and the global chemical potential, set by the

total particle number. In steady state one can define a flow path, l(r), forming a closed

loop around the ring, where r defines the position along the flow path. To constrain
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5.4 Superflow velocity

Figure 5.4: Particle flux in an angular segment: We consider an angular segment, dθ, within
which we can define a chemical potential, µ(θ). Within this segment we consider the flow
velocity to be parallel to the boundaries, varying as 1/r across the radial extent of the segment.

the constant of proportionality in (5.10), we use the condition for quantised circulation

along such a path, ∮
vs.dl = 2πq

~
m
. (5.12)

To simplify the problem further we consider an angular segment of the ring, dθ,

illustrated in figure 5.4. This allows us to define a chemical potential µ(θ) for that

given segment, which can be found from the local density (5.21). For a sufficiently

slowly varying trapping potential we can consider the flow velocity in such a segment

to be purely in the angular direction. The local velocity in such a segment has no z

dependence, but due to the velocity profile about a vortex line, varies as 1/r across the

width of the annulus,

vs(r, θ) =
v0(θ)

r
. (5.13)

The requirement of particle flux conservation now requires the flux through any seg-

ment, dθ, to be equal, and hence equation (5.10) takes the form∫ ∫
n(r, θ, z)vs(r, θ)rdrdz = constant, (5.14)

where the velocity is given by (5.13). To make further progress we need to consider the

density profile within an annular trap.

5.4.1 BEC density in a ring trap

The density profile of a condensate in an annular trap is covered extensively in the

thesis [171] relating to [100]. We model the ring trapping potential as a harmonic
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oscillator about the trap minimum in both the radial and vertical directions,

Vext(r, θ, z) =
1

2
mω2

zz
2 +

1

2
mω2

r (r − rM )2, (5.15)

where rM is the radius of the ring potential. As discussed in Section 4.2.1, we mea-

sure the vertical trapping frequency from the sheet potential as ωz = 2π × 400 Hz.

The radial trapping frequency due to the ring potential, ωr, is measured by applying

a weak attractive potential at the centre of the ring trap using the CDT, pulling the

atoms towards the inner radius. Quickly turning off this potential, the atoms oscillate

freely in the radial direction of the ring trap and we extract the trapping frequency by

observing oscillations in the radius of the density distribution at short TOF. From this

we find ωr = 2π × 180 Hz for the ring trap used to obtain the data in Section 5.2, and

presented in figure 5.2. The radius of the ring trap is equal to rM = 12.3 µm.

The condensate wavefunction is found by solving the GP equation (2.40) with ex-

ternal trapping potential given by (5.15),(
−~2∇2

2m
+ Vext(r) + g|Φ(r)|2

)
Φ(r) = µΦ(r). (5.16)

To simplify this problem one typically makes the Thomas-Fermi (TF) assumption (Sec-

tion 2.2.3) where, for large atom number, the kinetic energy is assumed to be negligible

compared to the interaction energy. In this regime the condensate wavefunction takes

the form of the inverted trapping potential. This assumption is valid provided the ex-

tent of the condensate is much larger than the healing length [172]. For an annular trap

this corresponds to the condition µ� ~ωi, for the condensate to be in the TF regime

along the ith direction. In the opposite regime where the kinetic energy dominates over

the interaction energy the many particle ground state is identical to the single particle

ground state, which for a harmonic trap is a Gaussian wavefunction.

For our experiment we find that at the initial atom number, N = 180, 000, for all

points in the ring µ(θ) > ~ωz > ~ωr, and hence the system is fully in the TF regime.

As the number decays the chemical potential decreases at all points in the ring, and

we find that for the relevant parameters over which phase slips occur, the density at

certain points in the ring is sufficiently low that ~ωz > µ(θ) > ~ωr, and the dynamics in

the z direction are frozen out and locally the BEC is two dimensional. The condensate

therefore has a TF profile in the radial direction, but a Gaussian profile in the vertical

direction. To fully solve the flow velocity profile at all points in the ring, we therefore

need to relate the density and chemical potential for both of these regimes:
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5.4 Superflow velocity

Fully TF regime

In the fully Thomas-Fermi regime the particle density is given by

nTF (r, θ, z) =
µ(θ)

g

(
1− z2

R2
z

− (r − rM )2

R2
r

)
for Vext(r, θ, z) < µ(θ) (5.17)

= 0 otherwise, (5.18)

where Rz =
√

2µ(θ)/mω2
z is the vertical Thomas-Fermi radius, Rr =

√
2µ(θ)/mω2

r is

the radial Thomas-Fermi radius, and µ(θ) is the local chemical potential defined as

µ(θ) = µ0 − Vext(r = rM , θ, z = 0). The relevant quantities are the 2D column density

integrated along z, and the 1D angular density integrated along both z and r:

n2D(r, θ) =

∫
nTF (r, θ, z)dz

=
4µ(θ)

3g
Rz

(
1− (r − rM )2

R2
r

)3/2

(5.19)

n1D(θ) =

∫
n2D(r, θ)rdr =

dN

dθ

=
µ(θ)RzRrrMπ

2g
(5.20)

Noting that Rz and Rr also depend on the local chemical potential,

n1D(θ) =
µ2(θ)πrM
mgωrωz

. (5.21)

These expressions allow us to relate an observed local density to a local chemical po-

tential which we will use to calculate how the flow velocity evolves as the atom number

decays. The equation for 1D flux conservation in (5.14) can now be calculated for the

TF regime density profile∫ ∫
nTF (r, θ, z)

v0(θ)

r
rdrdz = constant = C, (5.22)

where we label the constant as C, and have made use of the 1/r form of the flow velocity

(5.13). Using the result of (5.19) we find

C =
n1D(θ)v0(θ)

rM
, (5.23)

and hence the local velocity constant, v0(θ) is simply inversely proportional to the

local 1D density, n1D(θ). We now use the condition for quantised circulation along a
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connected path, l(r), to determine the constant C,∮
vs · dl = 2πq

~
m

(5.24)∮
v0(θ)

r
rdθ = C

∮
rM

n1D(θ)
dθ, (5.25)

therefore

C =
2πq~
rMm

/∮
1

n1D(θ)
dθ, (5.26)

vs(θ) =
v0

r
=

2πq~
mr

1

n1D(θ)

/∮
1

n1D(θ)
dθ. (5.27)

This equation shows us that due to the geometry of the system, the flow velocity at

a given point depends on the global density profile of the entire trap and not just the

local density at that point.

Radially TF regime

In the radially Thomas-Fermi regime, anticipated when atom loss reduces the local

chemical potential to below the vertical trapping frequency, the particle density is

given by

nRTF (r, θ, z) = e−z
2/a2

z
µ(θ)

g

(
1− (r − rM )2

R2
r

)
for |r − rM | < Rr (5.28)

= 0 otherwise, (5.29)

where az =
√
~/mωz is the vertical harmonic oscillator length. Once again we calculate

the 2D and 1D densities in the same manner

n2D(r, θ) =
µ(θ)
√
πaz

g

(
1− (r − rM )2

R2
r

)
(5.30)

n1D(θ) =
4µ(θ)

√
πazrMRr
3g

(5.31)

=
4

3g

√
2π

m

µ3/2(θ)

ωr
rMaz. (5.32)

We therefore see that the local 1D density has a different power law dependence on

the local chemical potential than in the full TF regime. The relation between the flow

velocity and 1D density is the same as in the fully TF regime derived in (5.27).

5.4.2 Effect of azimuthal roughness

With the relations above we can now deduce the flow velocity by simply measuring the

azimuthal profile of the 1D density. The procedure for this is outlined in figure 5.5. As

shown in figure 5.5 (a), taking an absorption image of the condensate in the ring trap,
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5.4 Superflow velocity

Figure 5.5: Calculation of azimuthal variation in flow velocity: (a) In trap absorption image
of the condensate density. The one dimensional density is obtained by summing pixels within
an angular segment, centred at the angle θ. (b) Extracted one dimensional particle density
versus angle around the ring trap. (c) Using (5.27) one can relate the 1D density profile to
a flow velocity profile, here plotted for the inner radius of the trap, r = rM − Rr, where the
velocity is highest. The correlation between regions of low density and regions of faster flow is
clear. The black dashed line is the inner radius velocity for a perfectly smooth ring trap with
the same µ0.

we obtain the 1D density by summing pixels within an angular segment, dθ, centred

at angle θ. The angular width of this segment is 2π/48, chosen to span approximately

the imaging resolution at the atoms, however the final result is the same for smaller

segments. To smooth the density profile obtained we use 144 segments which each

have 2/3 overlap with the adjacent segment. The extracted profile of n1D(θ) is shown

in figure 5.5 (b). Using this and equation (5.27), we can immediately calculate the

velocity vs(r, θ) at any point in the ring. We plot the velocity on the inner edge of

the ring for r = rM − Rr(θ) as a function of θ in figure 5.5 (b), accounting for the

variation in the radial TF radius, Rr, due to changes in the local chemical potential.

In our discussions we always consider the flow velocity on the inner surface since this

is where the condensate flows fastest, and hence will reach critical velocity first. From

this we can see that to conserve particle flux, regions of low density have the highest

flow velocity, and hence the superflow will destabilise here first.

In our experiment, for the initial atom number, we find the superflow is stable

and no phase slips occur, corresponding to vs < vc. To understand how atom loss

destabilises the flow, we need to calculate the time evolution of the flow velocity profile

plotted in figure 5.5 (c). Using the local density approximation (5.11), we relate the

local chemical potential to a global one by

µ(θ) = µ0 − Vext(r = rM , θ, z = 0) (5.33)

In figure 5.6 (a) we plot µ(θ), calculated from n1D(θ), using the relations (5.21) and

(5.32). We define the global chemical potential as the average of µ(θ), shown by the

dashed black line, and therefore the difference gives us the local trap roughness, Vext(r =
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Figure 5.6: Local chemical potential in a rough trap: (a) To calculate the flow velocity at all
points in the ring as a function of total atom number we extract the local chemical potential,
µ(θ), plotted as a function of the angle θ around the ring. (b) River analogy of figure (a). We
now consider the local mean field as the difference between a global chemical potential, µ0,
(the water level), and a spatially varying trap roughness (the river bed). As the atom number
decays the value of µ0 decreases (water level falls), but the trap roughness (river bed) stays
constant.

rM , θ, z = 0) = µ0 − µ(θ).

To illustrate this further, in figure 5.6 (b) we plot µ0 and Vext(r = rM , θ, z = 0)

as a function of θ. In analogy to fluid flow in a river, µ0 defines the global fluid

level, and Vext(r = rM , θ, z = 0) defines the roughness of the river bed. The local

chemical potential gives us the depth of the fluid at a given point. As the atom number

falls the global fluid level falls, but the channel roughness remains the same, fixed by

imperfections in the light which forms our trapping potential. This allows us to calculate

how µ(θ) (the depth of the fluid) evolves with changing atom number, and from this

we recalculate the 1D density profile, n1D(θ), and the velocity profile, vs(r, θ)
1.

Before applying this calculation to find the flow velocity evolution during decay, we

must first consider the effect of imaging resolution on the calculation. This was found

to have a significant effect on our results, and must be considered to bring the data

close to our models of the critical velocity [173].

5.4.3 Imaging resolution

The in-trap absorption images from which we have estimated the condensate density

profile are inherently blurred from the true density profile due to the effects of finite

imaging resolution and pixelation of the image. The true columnar density profile is

related to the imaged columnar density profile by convolution with a 2D point spread

1Due to the non-trivial relationship between total atom number and µ0, this calculation is actually
done in reverse. Changing µ0 slightly, we then find µ(θ) using equation (5.33) and the fixed trap
roughness. From this we can find the 1D density, and hence the total atom number which corresponds
to the revised µ0.
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Figure 5.7: Effect of imaging resolution on flow velocity: (a) To experimentally determine
the width of the point spread function (PSF) due to our imaging resolution and pixelation, we
fit the radial profile of the ring to n2D at various powers of the LG beam and extract a fitted
width, W . Plotting the square of 2W against the square of the calculated value of Rr, we can
extract the width of the PSF from the intercept with the axis. Top-left inset: Comparison of
Gaussian profile with waist given by equation (5.36) (dashed red) versus blurred image produced
by convolution with PSF (solid blue). Bottom-right inset: Example radial fit, from which W is
extracted. (b) The original image is ‘deblurred’ using the measured width of the PSF to obtain
an estimate of the true density profile. The validity of this step is confirmed by convolving
the deblurred image with the PSF and restoring the original image. Plotted is the azimuthal
variation in the trap roughness for both the original and deblurred image.

function (PSF) which we assume to be Gaussian,

n
(image)
2D (r, θ) = [n2D ∗ PSF ](r, θ), (5.34)

PSF (r, θ) =
1

2πσ2
exp

(
− r2

2σ2

)
, (5.35)

where sigma defines the waist of the point spread function. The true columnar density

in trap has a TF profile, given by n2D in equation (5.19). The radial profile of the

imaged columnar density, found by convolving n2D with the PSF, is well approximated

by a Gaussian profile with a waist given by

W =

√(
R2
r

2

)2

+ σ2. (5.36)

This is illustrated in the top-left inset of figure 5.7 (a). The Gaussian profile with a

waist given by W is indicated by the dashed red line. The radial profile formed by

convolution of the original TF profile of radius Rr with the PSF is shown in blue. The

good agreement between the two suggests we can find the σ of our imaging system by

fitting the radial profiles of images to extract W , and calculating Rr from the measured

atom number and trapping frequencies of our system.
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This is done by measuring the fitted Gaussian width, W , for 10 different values of

the true Thomas-Fermi radius, Rr. We vary Rr by changing the intensity of the LG

trapping beam to alter the radial trapping frequency, ωr. For each value of ωr we fit

the radial density profiles at 8 different angles θ, and define the average Gaussian width

W , as the root mean square of the fitted widths. This value is compared against the

average of the true Thomas Fermi radius Rr, which we calculate from our total atom

number and measured trapping frequency. In figure 5.7 (a) is plotted (2W )2 versus the

square of Rr, fitted to a straight line with a fixed gradient of 1. Each data point is an

average of two images. The close agreement between the data and the fixed linear fit

is confirmation of equation (5.36). The intercept at the y axis gives the width of the

PSF as σ = 2.6 ± 0.3 µm. This result is reasonable when compared to our estimated

imaging resolution of 2 µm and pixel size of 1.2 µm.

To find the true columnar density profile we now need to deconvolve the image with

a PSF of width σ. This is clearly a non-trivial problem, since many density profiles can

be convolved with the same PSF to obtain profiles close to our imaged density. This

step is carried out using in-built tools in Matlab designed for such a problem. To pre-

vent the procedure from introducing small features into the deconvolved image which

cannot be inferred from the original image, we provide the function with a measure of

the signal-to-noise ratio in the image, calculated from the ratio of the variance at the

atoms compared to that in an empty control shot. An example of this deconvolving

process is shown in figure 5.7 (b). By repeated calculations of trap roughness from

successive images, we estimate our uncertainty in the calculated trap profile at ≈ 5%,

due to atom number and trap fluctuations, and variations in our methodology.

Importantly, this uncertainty does not account for systematic errors. The decon-

volution process we have used here simply provides us with an estimate of the atom

density which is consistent with our observations. To confirm this estimate, we check

that reconvolving with the measured PSF produces a density profile in good agreement

with our images. In addition, we also adjust the parameters of the deconvolution step

such that the Thomas Fermi radius of the deconvolved image is consistent with our cal-

culated value. Nevertheless, this stage in our calculations introduces a large source of

systematic uncertainty. Unfortunately, accounting for finite imaging resolution proves

to be an important step in accurately calculating the flow velocity and critical velocity,

but one must keep in mind the inherent uncertainties that such a process involves.

The trap roughness calculated from the deconvolved image is anticipated to be

closer to the true trap roughness, and can clearly be seen to be a more sharply peaked

version of the profile extracted from the original image. The larger range of this trap

roughness leads to faster maximal flow at the weakest parts of the ring, and slower flow

at the deepest parts of the ring. The complete protocol for extracting the flow velocity

as a function of N is then given as

1. Deblur image by deconvolving with PSF of σ = 2.6 µm
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2. Extract n1D(θ) by summing pixels in angular segments such that
∫
n1D(θ)dθ = N

3. Extract µ(θ) from n1D(θ) using equations (5.21) and (5.32)

4. Extract global mean field, µ0, from the average of µ(θ)

5. Extract trap roughness, Vext(r = rM , θ, z = 0) = µ0 − µ(θ)

(a) Recalculate µ(θ) = µ0 − Vext(r = rM , θ, z = 0)

(b) Recalculate n1D(θ) from µ(θ) using equations (5.21) and (5.32)

(c) Recalculate vs(r, θ) from n1D(θ) using equation (5.27)

(d) Recalculate atom number, N =
∫
n1D(θ)dθ

(e) Reduce µ0 slightly and repeat steps 5a→5e

The results of this calculation are shown in figure 5.8 (a), where we plot the maximal

flow velocity versus atom number, N , for the narrowest point in the ring, where the local

density and µ(θ) are lowest. We plot this for the q = 3, 2, and 1 states, indicated by

the solid blue, green, and red lines respectively. As expected, the loss of atom number

further constricts the flow at the narrowest parts causing the velocity to increase.

For N approaching 50, 000, the flow velocity diverges, corresponding to the condensate

density fragmenting due to the global chemical potential, µ0, falling below the trapping

potential at the roughest part of the trap.

For comparison with our data on phase slips presented in figure 5.2, we eliminate

the time variable and plot the observed R (and equivalently q) values versus N (figure

5.8 (b)). As in figure 5.2, the same colour code is used to indicate different q states.

We find each rotational state is observed up to a critical atom number Nc(q), beyond

which decay to a lower angular momentum state is inevitable. We thus empirically

associate this critical atom number with the condition vs(q) = vc. Using figure 5.8 (a),

we relate this critical atom number to a maximal flow velocity for each q state, vmax(q).

From the data in figure 5.8 we find vmax(3) = 1.29 mm/s, vmax(2) = 0.96 mm/s, and

vmax(1) = 0.78 mm/s. The changing maximal flow velocity for the three q states is

therefore due to the critical velocity decreasing with decaying atom number. In figure

5.8 (b) we also observe phase slips for vs < vc. This is discussed further in Section

5.6, where we attribute this to rare stochastic decay events, most likely due to thermal

activation over the energy barrier to decay which is still present for vs < vc.

To see whether we can understand these results further, we now consider what

mechanism defines the critical velocity in our ring BEC.

5.5 Critical velocity

Having calculated the evolution of the superfluid velocity over which we observe phase

slips, we are now in a position to contrast our data to a possible model of the critical
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Figure 5.8: Evolution of peak flow velocity for decaying atom number: (a) Peak flow velocities
for the q = 3, q = 2, and q = 1 states are illustrated by the solid blue, green, and red lines
respectively. The shaded regions about each line, illustrate the variation introduced by the
estimated 5% fluctuations in the trap roughness and atom number. The vertical dashed lines
indicate the lowest N at which we observe each q state, with the same colour coding applied.
(b) We plot the same data as in figure 5.2, now plotted against atom number. We see that each
q plateau extends up to a minimum N , which using figure (a) we can now relate to a maximum
flow velocity vs(q).

velocity. To do this we first consider three different analytic calculations of vc: the

Feynman velocity, vFc , the speed of sound, c, and the surface critical velocity, vsc . Of

these three we find our data agrees closest with a critical velocity given by the speed of

sound, a result predicted in several numerical studies solving the GPE for an annular

BEC with a repulsive barrier potential [40, 173–175]. The propagation speed of surface

modes localised at the edge of the cloud, vsc , also gives reasonable agreement with our

data, since over the parameter space considered, vsc and c are very similar. In Section

5.5.4 we numerically calculate the excitation spectrum of an annular BEC and show

the relevant excitation which sets vc switches from surface modes to phonons below a

certain local chemical potential. We therefore conclude that the phase slips we observe

in figure 5.8 (b) are indeed nucleated by phonon modes, and hence the relevant critical

velocity is given by c. Finally, we note that the Feynman critical velocity, vFc , only

provides an order of magnitude estimate and does not provide quantitative agreement

with our measured critical velocity, nor predict the reduction in vmax(q) with decreasing

N , which we observe.

5.5.1 Feynman velocity

In Section 2.4.3 we derived the Feynman critical velocity by considering the minimum

energy cost of inserting a vortex ring into a flow channel of radius R:

vFc =
~
mR

ln
R

ξ
, (5.37)
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where ξ is the vortex core size, given by the healing length. In a toroidal flow such

a vortex ring will form at the walls of the channel before shrinking in on itself and

annihilating, completing a full single phase slip [40]. The geometry of this excitation

is three dimensional and applies to cylindrical flow channels. Our annular BEC is

asymmetric, with a vertical trapping frequency over twice the radial. For the densities

over which we observe phase slips, the condensate at the weakest part of the ring

where the decay events occur is quasi 2D, with µ(θ) < ~ωz. Indeed for the very lowest

densities at which we observe q = 1→ q = 0 phase slips, the condensate is approaching

1D at the weakest point. The relevant excitation to then consider in a two dimensional

geometry is not vortex rings, but straight vortex lines of vortex-antivortex pairs aligned

along the vertical direction, which either cross the annulus and annihilate one another

in the bulk, or nucleate in the bulk and move apart towards the edge of the condensate,

decaying to elementary excitations at the surface. While a single vortex line can also

cause a 2π phase slip, the energy associated with a vortex-antivortex phase slip is lower.

For a vortex-antivortex pair separated by a distance D in a background flow of velocity

vs, the energy in the frame moving with the flow is given by

E′ = 2π
~2n2D

m
ln
D

ξ
− 2π~n2DDvs, (5.38)

and hence the critical velocity is given by

vFc =
~
mD

ln
D

ξ
. (5.39)

For our annular flow, D = 2Rr, and the healing length ξ, is an effective healing length,

ξ1D, integrated over the vertical and radial dimensions to account for the varying density

across the annulus.

Using the expression for the healing length in a uniform condensate in (2.64), and

the expression for the sound speed in a uniform condensate in (2.62), we can show that

the two quantities are related by

ξ =
~√
2mc

. (5.40)

Using this we can rewrite the Feynman velocity (5.39) in the form

vFc
c1D

=
√

2
ξ1D

D
ln

D

ξ1D
, (5.41)

where c1D is similarly an effective sound speed averaged over the cross section of the

annulus. Since the expression for the Feynman velocity is only valid for the condition

D � ξ1D, where the channel width is much larger than the vortex core size, we have

the condition that the Feynman velocity is always much lower than the sound velocity.

The maximal value of the Feynman velocity is therefore found to be vFc = 0.52c1D,

occurring for a channel width D = 2.7ξ.
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5.5.2 Speed of sound

The speed of sound is defined as the flow velocity above which it is energetically ben-

eficial to excite phonon modes in the condensate. In Section 2.3.1 we considered per-

turbations in the wavefunction of a uniform condensate to derive the sound velocity

as

c =
√
ng/m, (5.42)

where n is the particle density, and g is the interaction parameter given in (2.32). In

real experiments with inhomogeneous density, the sound velocity is maximal at the

trap centre and falls to zero at the surface. To compare this criteria to our system

we therefore need to define an effective sound velocity c1D, which integrates over the

varying density in the z and r direction [176]. Such an effective sound velocity is given

by [149]

c1D =

√
n1D

m

∂µ

∂n1D
, (5.43)

where n1D is the 1D density defined in (5.21) and (5.32). Since our phase slip events

occur where the condensate is in the radial TF regime, using equation (5.32), we find

an expression for the local effective sound velocity as

c1D(θ) =

√
2µ(θ)

3m
. (5.44)

We therefore anticipate a local Landau criterion, where for max(vs(r, θ)) > c1D, phonon

modes will be excited and the supercurrent will decay. The precise mechanism by which

such phonon modes then go on to nucleate vortices and cause a phase slip is still not

fully understood [173].

5.5.3 Surface modes velocity

In experiments on simply-connected rotating atomic gases [31, 32, 177, 178] it was often

found that the critical velocity for a vortex entering the condensate was higher than that

predicted purely by global energetic arguments [179]. This higher vc is associated with

dynamic instabilities of surface excitations, which provide the necessary microscopic

route for vortex nucleation. The surface mode model aims to find the local critical

velocity over the TF surface above which such unstable surface excitations form. This

model produces a general theory based on the idea that the TF surface of a large

condensate enters a bulk regime in which the physics of vortex formation is local. In

general, an energetically unstable surface mode must first appear for vortices to enter

the cloud, therefore the Landau criterion is universal to vortex formation. For large

enough condensates where the surface length scale is much smaller than their overall

extent, the local Landau critical velocity may be determined by solving one universal

equation.
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For a large enough condensate one can neglect the curvature of the TF surface and

approximate the trapping potential to a linear ramp, V = Fr, where F is the potential

gradient at the TF surface given by

F =
dV

dr

∣∣∣∣
r=Rr

=
√

2µmω2
r , (5.45)

for a harmonic trap. One then considers the instability to form in a surface boundary

of depth

δ =

(
~2

2mF

)1/3

. (5.46)

The surface mode model is then valid in the regime where Rr � δ, which simplifies to

Rr
δ

= 2

(
µ

~ωr

)2/3

� 1. (5.47)

The relevant GPE equation then reads

i~
∂Φ

∂t
=

(
−~2∇2

2m
+ Fr + g|Φ|2

)
Φ, (5.48)

where the origin of r is at the TF surface. The excitation spectrum of such a system

was solved numerically in [180], where it was found that the critical velocity is given

exactly by

vsc =

(
2~F
m2

)1/3

=

√
2~ωr
m

(
µ

~ωr

)1/6

. (5.49)

The arguments of the surface model are local and hence the theory should be equally

applicable to rotating annular condensates as long as both the width of the annulus

and its inner radius are much large than the surface depth δ. Indeed the surface mode

theory was extended to a 2D ring geometry by Dubessy et al. [181]. By explicit

calculation of the excitation spectrum of an annular condensate, the calculated value

of the critical velocity was shown to be equal to vsc . In Section 5.5.4 we repeat this

calculation, arriving at the same conclusion for sufficiently large condensates. Here

however, we show that for low densities the nature of the excitation changes. Below

a certain chemical potential the radial extent of the annulus becomes comparable to

δ and the instability changes from a surface mode with vc = vsc , to a phonon mode

located in the condensate bulk with vc = c1D.

5.5.4 Excitation spectrum of a ring BEC

We now calculate the excitation spectrum of a two dimensional Bose gas trapped in

a smooth ring potential, as was done in [181]. From this we find the critical angular

velocity above which the system must be rotated before vortices are excited. By varying

the total atom number in the trap we calculate the value of this critical velocity as a

function of the chemical potential (here µ(θ) ≡ µ0, since we consider a cylindrically
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symmetric trap). In this case of a rotating trap and a stationary condensate, the critical

velocity is first exceeded at the outer radius of the condensate. In our experiment of

a rotating superfluid and a stationary trap, the same critical velocity applies, but now

the fluid velocity is largest on the inner radius.

We consider the GPE at zero temperature for a 2D ring. This most closely matches

our geometry of interest, where we find phase slips occur in the quasi-2D regime. As

before, the trapping annular potential is written as a harmonic potential of frequency

ωr centred at radius rM . We use the associated scales for energy (~ωr), time (ω−1
r ),

and length ar =
√
~/(mωr). The dimensionless 2D GPE then reads

i∂tΦ =

(
−∆

2
+

1

2
(r − r0)2 + g|Φ|2

)
Φ, (5.50)

where the condensate wavefunction, Φ = Φ(r, θ, t), is normalised to unity, ∆ = ∂2
r +

∂r/r + ∂2
θ/r

2 is the Laplacian in polar coordinates, r0 = rM/ar is the dimensionless

ring radius, and g = N
√

8π a
az

is the dimensionless 2D interaction constant, where N is

the atom number, a is the s-wave scattering length, and az is the harmonic oscillator

length in the z direction [182].

From the rotational invariance of (5.50), we consider solutions of the form

Φ(r, θ, t) = e−iµt[Φ(r) + δΦm(r, θ, t)], (5.51)

where

δΦm(r, θ, t) = um(r)e−i(ωt−mθ) + vm(r)∗ei(ω
∗t−mθ). (5.52)

Φ denotes the stationary ground state of the system, µ is the global chemical potential,

and δΦ is a small perturbation parameterised by the angular wavenumber m. A detailed

explanation of how this problem is solved is given in Appendix B. We first calculate the

ground state for a given N by imaginary time propagation of a test TF profile, stopped

when the relative variation in µ falls below 10−12. The Bogoliubov-de Gennes equations

for um(r) and vm(r) are then solved by diagonalisation. We obtain real frequencies with

a dispersion relation ω = ω(m), the lowest branch of which allows us to compute the

critical angular velocity Ωc = min(ω(m)/m). The density profile of the excitation is

found by δnm(r) = 2Re[Φ(r)∗(um(r) + vm(r)∗)].

The results of this calculation are shown in figure 5.9. Here we plot the lowest

branch of the dispersion relation for three different values of the total particle number,

N . The critical angular velocity is indicated by the dashed grey line, ω = mΩc. At

small m values the lowest branch is linear, and can be associated with rotating soundlike

waves. For larger atom numbers, at higher m values, this branch exhibits a small

negative curvature that makes the critical angular velocity smaller than the angular

speed of sound. The radial density profile of the excitation, shown in the inset, is
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Figure 5.9: Numerical calculation of 2D annular BEC excitation spectrum: The three plots are
the eigenfrequencies, ω, and the angular wavenumber, m, for the lowest branch of the dispersion
relation, plotted for three different values of the total particle number. The black data points
are the results of our numerical calculation, obtained by diagonalisation of the Bogoliubov-de
Gennes equations. The grey dashed line is the critical angular velocity, Ωc = min(ω(m)/m).
The solid red line is the critical angular velocity, as predicted by the surface model. The inset of
each plot shows the radial density profile of the condensate (black dashed line) and the density
profile of the excitation (red line), normalised to have the same peak value.

strongly localised on the outer radius and we thus expect that the mode corresponding

to the critical angular velocity will be correctly described by the surface mode model

in Section 5.5.3. The critical angular velocity within the surface mode model is simply

given by

Ωs
c =

vsc
re
, (5.53)

where re is the radius of the excitation. For this case of a rotating trap and stationary

BEC, the critical velocity is first reached on the outer surface, and hence re = rM +Rr.

This critical angular velocity is indicated by the red line in figure 5.9. We therefore

see that for the largest atom number, where the assumptions of the surface model are

most valid, Ωc and Ωs
c are in excellent agreement as was concluded in [181].

As illustrated in figure 5.9, as the particle number decreases the negative curvature

at large m values disappears. Eventually at low numbers the critical velocity is equal to

the speed of sound, set by the linear part of the spectrum near m = 0. The excitations

are then phonons and are no longer localised at the surface but distributed over the

entire condensate profile. This is associated with a failure of the surface model, with

the value of Ωc significantly less than Ωs
c. This disagreement with the surface model at

low N is intuitive, since at low densities the extent of the condensate becomes compa-

rable to the surface depth.

The critical velocity as determined by the numerically calculated excitation spec-

trum is simply found from the critical angular velocity as

vec = Ωc(rM +Rr), (5.54)
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Figure 5.10: Comparison of critical velocity models: Plotted is the critical velocity versus
local chemical potential for all models considered: Feynman velocity, vFc (green), effective
sound speed, c1D (blue), surface modes velocity, vsc (red), and the critical velocity extracted
from numerical calculations of the excitation spectrum of an annular BEC, vec (black triangles).
We observe a transition at ≈ 1kHz, above which the critical velocity is determined by surface
mode instabilities, and below which it is set by excitation of phonon modes. We note that our
data on phase slips is in the regime where the critical velocity is sound like.

since the maximum velocity at a given rotation Ω is at the outer radius. In figure 5.10,

the value of vec is plotted as a function of chemical potential, as indicated by the black

triangles. To compare this result with our analytic models, the Feynman velocity, vFc ,

the effective sound velocity, c1D, and the surface mode velocity, vsc , are also plotted

on the same axes. For large µ, the critical velocity agrees with vsc , in agreement with

the results of [181]. For values of µ below around 1kHz, the sound velocity falls below

the surface mode velocity, and the relevant excitation becomes phonon like and is no

longer localised at the surface. This deviation from the surface model occurs when the

ratio of the condensate extent to the surface depth falls below Rr/δ . 6.3. The value

of vec then closely follows the effective sound velocity, c1D, with the small discrepancy

possibly due to the continuous change in dimensionality, and hence averaging of c. This

agreement between the speed of sound and vec found by solving the GPE is in agreement

with the results of [40, 173–175]. We also observe that the Feynman critical velocity,

vFc , is considerably lower than the others and only gives reasonable agreement with the

numerical result at very low chemical potentials.
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Figure 5.11: Comparison of critical velocity models with flow velocities calculated from data
for different q states: The data points are the calculated flow velocities versus atom number for
the data points in figure 5.8, where the blue, green and red points indicate the q = 3, 2, and 1
states respectively. The solid lines in blue, green, and red plot the functions vs(q) versus N for
the q = 3, 2 and 1 states respectively. The shaded areas around each q data set illustrate the
uncertainty in flow velocity due to 5% fluctuations as in figure 5.8 (a). The dashed black line is
the critical velocity versus N for the model considered. The shaded area around this line again
illustrates the error introduced by the fluctuations. The models used are the Feynman critical
velocity, vFc , in (a), the surface mode critical velocity, vsc , in (b), the averaged speed of sound,
c1D, in (c), and the numerically calculated critical velocity, vec , in (d).

5.5.5 Critical velocity discussion

To test our calculations of vc we now need to compare them to our data in figure 5.8,

where we have the distribution of q states with atom number N , and our calculations

of how to convert a given N and q to a peak flow velocity vs(q,N). The results of this

comparison are plotted in figure 5.11 for all four critical velocities: Feynman, vFc , sur-

face mode, vsc , averaged sound, c1D, and the numerical result, vec , in figures (a) → (d)

respectively. The data points are our measured vs(q,N) values versus N , where the

blue, green, and red points indicate the q = 3, 2, and 1 rotations states, originally as-

signed in figure 5.2 using the quantisation of R. The shaded area around each q data

set illustrates our uncertainty in calculating vs(q,N) due to fluctuations, as in figure
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5.8(a). The right edge of this area therefore indicates the highest N/lowest vs(q) at

which we observed each q state and the left edge indicates the lowest N/highest vs(q)

at which we observe each q state. We therefore identify the left edge with the condition

vs(q) = vc. The respective critical velocity is also plotted as the dashed black line, and

the black shaded area similarly represents the effect of fluctuations in calculating vc.

Good agreement between our data and a given vc model would then be indicated by

the maximum vs(q) for each q state (left edge of the coloured shaded areas) lying close

to the critical velocity (black shaded area).

The Feynman critical velocity (5.39), plotted in figure 5.11 (a), is clearly too low

and predicts immediate decay of all q > 1 states and decay of the q = 1 state at

N ≈ 120 × 103. We also note that the form of the Feynman velocity has a very weak

dependence on N and therefore cannot explain the decrease in vmax(q) with decaying

N which we observe.

The critical velocity of the surface model (5.49), plotted in figure 5.11 (b), shows

better agreement with the data, though predicts a larger vc than we observe. For our

data, the ratio of the condensate extent to surface depth Rr/δ is in the range 2 − 4,

and therefore the criteria for applying the surface model is marginal. In our original

discussion of these results in [14], the deconvolution method adopted was slightly dif-

ferent and we allowed the width of the PSF to vary to best match our data, finding

good agreement between the data and the surface model for σ ' 2.9 µm, in reasonable

agreement with our measured σ. With the additional insight from the numerical calcu-

lations in Section 5.5.4, we now see that in the regime of our results, the condition for

the surface model to hold is not strictly met, and we anticipate the critical velocity to

be in better agreement with the local sound velocity. In this discussion, we therefore

fixed σ at its measured value to directly compare our data to both models. This original

agreement with the surface model does however highlight the systematic uncertainty

introduced by the deconvolution step in our calculation.

The averaged speed of sound (5.44), plotted in figure 5.11 (c), shows excellent agree-

ment with our data, closely predicting the minimum N , and therefore maximum vs(q),

for all three q states. The critical velocity extracted from our numerical calculations

(5.54) is plotted in figure 5.11 (d), and as expected is very close to the result for the 1D

sound velocity. From this we conclude that our data is in agreement with the critical

velocity predicted by the GPE, which for our regime is very closely related to the local

1D sound speed.

To further confirm our results we perform another experiment in which we ex-

ploit the fact that the roughness of our ring potential grows with Vr. We calculate

how much further we would need to increase the trap roughness, by increasing the

intensity of the LG beam, before the q = 3 and q = 1 state were inherently unsta-

ble and decayed immediately at the starting atom number. Our calculations predict

that the an increase of LG intensity by 30 ± 10% would cause immediate decay of
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the q = 3 state (vs(q = 3, N = 180 × 103) > c1D(N = 180 × 103)), and an in-

crease of LG intensity by 70 ± 10% would cause immediate decay of the q = 1 state

(vs(q = 1, N = 180× 103) > c1D(N = 180× 103)). Experimentally we find agreement

with the values in the upper end of this range, typically needing to increase the LG

intensity by 40% to deterministically kill q = 3 flow, and by 80% to deterministically

kill all superflow. This suggests that the true value of our superflow velocity lies to-

wards the lower end of our error region, and the critical velocity lies towards the upper

end of the error region. Since the two quantities have negative correlation, this would

be consistent with a small systematic underestimate in determining atom number, or

overestimate in determining trap roughness.

While our results do show excellent agreement with a critical velocity given by

vc = c1D, it’s important to note that our calculations of the flow velocity and critical

velocity are built upon several steps, each of which introduces uncertainties. While we

have tried to account for errors in our analysis arising from fluctuations in atom number

and trapping potential, possible systematic effects such as atom number calibration,

trapping frequency measurements, and accounting for our finite imaging resolution, can

also effect our results. In our original analysis for example, by considering a slightly

larger PSF we found reasonable agreement between our data and the surface model

calculation of the critical velocity. It is therefore important to keep in mind that the

deconvolution step which accounts for our finite imaging resolution, only provides an

estimate of the true density profile. Such systematic uncertainties make it difficult to

reliably distinguish between vs and c1D which, over the range where we observe phase

slips, offer similar predictions of the critical velocity. Nevertheless, the fact that our

data is in such close agreement with vc = c1D for a range of atom numbers and flow

velocities, is strongly suggestive that the critical velocity in our system is set by the

local effective sound velocity.

Comparison to previous measurements

We now compare our findings to those in [100], which provides the only other experi-

mental measure of the critical velocity in an annular condensate. In this experiment,

q = 1 superflow was prepared using phase imprinting and a repulsive potential barrier

was raised, reducing the density at a point in the ring. For q = 1 superflow, the detec-

tion was binary, and hence they plotted the survival probability of circulation versus

barrier height. For a barrier height above a certain value they observed a dramatic

reduction in survival probability, associated with flow above the critical velocity in the

barrier region. Using similar methods to estimate the superflow velocity at the bar-

rier, they find their measured vc to be consistent with the Feynman velocity vFc , and

from this infer the decay mechanism to be phase slips. In contrast, for our experiment

we found the Feynman velocity did not provide an accurate prediction of the critical

velocity we observed, and more importantly could not explain the variation in critical
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velocity we observed with changing atom number. At first glance then these two results

seem incompatible, however closer inspection actually reveals agreement between the

two measurements, and only a difference in interpretation.

Importantly for the experiment in [100], the local chemical potential in the barrier

region is only on the order 100-200 Hz, and hence is bordering the quasi-1D regime.

For such a low chemical potential, the small radial extent of the annulus means the

ratio of the Feynman critical velocity to the effective sound velocity is close to its max-

imal value (5.41). While their measured critical velocity is found to agree with vFc , in

their case this actually corresponds to vc ≈ 60%c1D, and therefore the discrepancy is

not as large as first seemed. The remaining difference in critical velocity between their

experiment and ours can be explained by the differing definitions of the critical velocity

which were used.

In our experiment we define the critical velocity as the flow velocity above which

decay is ultimately inevitable and occurs on the millisecond scale. Therefore we assign

the condition vs(q) = vc to the largest flow velocity we observe for a given q state. For

vs < vc we still observe phase slips, however we interpret these as rare stochastic decay

events which can occur through thermal or quantum fluctuations, as observed in liquid

helium and superconducting nanowire systems. In contrast, the condition for reaching

the critical velocity in [100] is defined as the velocity at which 〈q〉 = 1/2. While they do

observe some width to this transition, they attribute this to technical fluctuations rather

than any stochastic nature of the decay events. To distinguish this definition from our

own, we label such a velocity as an effective critical velocity v̄c. This effective critical

velocity does not therefore define the maximal allowed flow velocity without decay, but

instead defines the velocity above which supercurrent decay becomes likely. Looking

at our data in figure 5.11, we observe that such a definition decreases the critical flow

velocity we consider by around 20%, and increases the sound velocity we consider by

around 25%. Therefore we find our data is also consistent with v̄c/c1D ≈ 0.6 − 0.8.

This suggests that the two data sets are not necessarily inconsistent, simply that the

interpretations of flow reaching the critical velocity are different. Importantly however,

since our experiment uses data from several q states with decay at higher values of

the chemical potential, we are able to conclusively discount the Feynman criteria as an

accurate quantitative measure of the critical velocity. This enables us to interpret our

data as stochastic phase slips as vs → vc, and a hard cutoff for superflow above the

local sound velocity, c1D, where decay is inevitable.

5.6 Statistics of stochastic phase slips

In our discussion of the critical velocity, we defined the critical velocity as the minimum

superflow velocity of the system above which the superflow would decay both rapidly
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and inevitably. This is consistent with numerical solutions of the GPE which find that

for flow above the critical velocity, phase slip events occurring via vortex-antivortex

annihilation take place within about 0.5 ms [173]. At absolute zero temperature in the

absence quantum tunneling of the order parameter, one would then expect a given q

state to remain perfectly stable until gradual atom loss brought about the condition

vs(q) = vc, at which point a phase slip would occur to the q−1 state. Returning to the

particle in a washboard analogy in figure 5.1, the condition vs = vc then corresponds to

the energy barrier disappearing, and the local energy minima at L/N = q~ vanishing,

causing decay to the next local energy minima.

Looking at our data in figure 5.11 (d), we clearly observe a less deterministic process.

We observe stochastic phase slips occurring for vs < vc, corresponding to particles

escaping their local energy minima before the energy barrier reaches zero. Purely

experimentally, this is directly observed in the horizontal overlaps of the different q

plateaus as a function of N in figure 5.8 (b). Similar overlaps are seen in the time

domain in figure 5.2 (b), showing that the observed q is not a deterministic function

of either t or N . From figure 5.11 (d), we see that only a small fraction of this overlap

can be attributed to technical fluctuations in our experiment. Factoring in the atom

number and trap fluctuations indicated by the shaded areas in figure 5.11 together with

shot-to-shot variations in atom number detection of ∼ 6%, such technical fluctuations

can only account for ≈ 25% of the observed overlap in q-state plateaus.

We therefore conclude that there exists a significant parameter space where the

superfluid flow is subcritical but stochastic phase slips still occur on a time scale of

seconds. We can then consider the supercurrent state, q, for vs(q) < vc, as in an energy

minimum where there still exists an energy barrier preventing decay to the q− 1 state.

As vs → vc, the size of this barrier tends towards zero, and hence the probability of

crossing the barrier and causing a phase slip increases exponentially. As was observed in

helium and superconducting nanowire experiments, the nature of this barrier crossing

could be due to either thermal or quantum fluctuations.

The possibility of thermal activation of phase slips for vs < vc was considered in

[175], where a numerical implementation of the truncated Wigner approximation was

used to simulate the experiment of Ramanathan et al. in [100] at finite temperature.

These calculations found the observed reduction in the effective critical velocity v̄c =

0.6c1D from the zero temperature GPE value of v̄c = vc = c1D was consistent with a

temperature of ≈ 35 nK. For our experiment we find an effective critical velocity for the

q = 3→ 2 transition1 of v̄c = 0.73c1D, and we independently measure our temperature

by fitting the thermal component in TOF as T = 29± 3 nK. Such a result is certainly

of a similar order to that of the calculation and, provisionally at least, suggests the

stochastic decay events we observe may be explained by thermal activation of the

1We cannot easily define similar critical velocities for subsequent phase slips since the initial popu-
lation in these q states depends on decay from higher q states.
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Figure 5.12: Counting statistics of phase slips: (a) For the data shown in figure 5.2 we plot
the distribution of the observed q values as a function of rotation time t. Each data point is
an average over a 0.8 second time bin. The inset shows the smooth evolution of 〈q〉 with t. (b)
Histogram of q values for four representative rotation times.

system over an energy barrier. Such a hypothesis could then by tested by repeating

this experiment as a function of temperature. With increasing temperature the system

could be excited over a larger energy barrier at smaller values of vs/vc, and hence one

would expect to observe phase slips at larger values of N .

Our ability to resolve q states allows us to study the evolution of the q distribution

in time. This in essence provides full time-resolved counting statistics of phase slips,

and should provide excellent input for further theoretical modeling and understanding

of our observed stochastic decay dynamics. In figure 5.12 we present such an evolution

in time for the same data set as in figure 5.2, which forms the basis of our critical

velocity analysis. We note that this accelerating decay process is not Markovian since

the phase slip probability grows as vs/vc increases through the gradual decay of N . For

larger data sets this opens the possibility to fit this to solutions of the rate equation,

and thereby extract how the phase-slip probability evolves with time. Such results

could provide insights into the form of the energy barrier, and therefore shed light on

the decay process and the role of thermal and quantum fluctuations. We also note that

the mean rotational state, 〈q〉, decays smoothly with time (inset of figure 5.12), so our

ability to experimentally resolve different q states with high fidelity will be essential to

further understanding phase slip dynamics.

5.7 Conclusion

In conclusion, we have demonstrated and studied long-lived multiply charged superflow

in an annular atomic BEC. We resolve with high fidelity quantised steps in the decay
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of the supercurrent, which corresponds to vortex-induced 2π phase slips. This result

allows us to unambiguously identify the decay mechanism as phase slips, independent

of any calculations. The supercurrent decays rapidly if the flow velocity approaches a

critical velocity that is in agreement with our numerical calculations of the excitation

spectrum. Our numerical calculations identify a transition from a large condensate

regime where the relevant excitations are surface instabilities and vc = vsc , to a small

condensate regime where the relevant excitations are phonons localised in the conden-

sate bulk and vc = c1D. For our data on phase slips we are in the small condensate

regime, and hence observe a critical velocity in agreement with the averaged speed of

sound, as predicted by numerical solutions of the GPE.

While our calculated vc is in good agreement with the maximal flow velocity we

observe, we also find stochastic phase slips occur at a much lower rate, for lower flow

speeds. An important question for future work is whether these rare phase slip events

occur via quantum or thermal fluctuations. This obviously points towards further ex-

periments studying the dynamics of phase slips as a function of temperature. Such an

experiment would be analogous to those performed in liquid helium [88] and supercon-

ducting nanowire [84] systems, which have been able to identify two distinct regimes

dominated by either thermal or quantum fluctuations. It should also be possible to

reach the regime of one dimensional superflow, where it’s possible the supercurrent

decay could be fundamentally different.

Another important direction for future study would be to measure the critical ve-

locity for higher charge superflow. One of the main sources of uncertainty in both

our experiment and that in [100], is that for modest q values the flow velocity only ap-

proached the critical velocity for low values of the local chemical potential. In particular

for our experiment, the deconvolution step introduces a systematic uncertainty which

is quite small as a fraction of the trap roughness. However, when compared to the local

chemical potential at which we observe decay, this uncertainty becomes significant. In

contrast, high charged superflow would decay at larger values of the local chemical po-

tential where uncertainties in calculating the flow velocity and critical velocity would

be lessened. For now however, we decided to explore a different direction by studying

the role of the spinor degree of freedom on supercurrent stability, the results of which

are presented in the following chapter.
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Persistent currents in spinor condensates

In the previous chapter we studied the stability and decay of persistent currents in

single-component condensates. We showed that decay occurred through stochastic,

vortex-induced phase slips, the probability of which increased as the flow velocity ap-

proached the critical velocity. In this chapter we extend our studies to multi-component

systems, in particular those involving two spin states. Such an extension is essential

for the further understanding of superfluids with a vectorial order parameter, such as

those in d-wave and p-wave superconductors, and certain phases of superfluid 3He.

These experiments are also pertinent to the application of ultracold atom systems,

with persistent currents in multi-component systems a necessary aspect of many atom

interferometers. Persistent currents in two-component Bose gases have been studied

theoretically [183–187] but many issues remain open. Even the central question of

whether, and under what conditions, this system supports persistent currents has not

been settled.

In this chapter we study the stability of supercurrents in a toroidal two-component

gas consisting of 87Rb atoms in two different spin states. For a large spin-population

imbalance we recover the long-lived metastable behaviour of the single component case

in Chapter 5, with superflow persisting for over two minutes and limited only by the

atom-number decay. However at a small population imbalance the onset of supercur-

rent decay occurs within a few seconds. We demonstrate the existence of a well-defined

critical spin polarisation separating the stable and unstable current regimes. We also

study the connection between spin coherence and superflow stability, and show that in

our system only the modulus of the spin-polarisation vector is relevant for the stability

of the supercurrent.

6.1 Multi-component condensates

Multi-component condensates are defined as systems where two or more internal quan-

tum states are macroscopically populated. Such systems then possess internal degrees

of freedom relating to the relative population and phase of each component, in addi-

tion to the usual external degrees of freedom of a single-component condensate. The
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interplay between these external and internal degrees of freedom in multi-component

systems can then lead to a range of phenomena not present in scalar condensates. In

this section we aim to introduce some of the theory of multicomponent systems. We

emphasise that a complete theoretical understanding of our observations regarding the

stability and decay of a two-component superflow is still lacking. The topics covered

here are therefore not intended to offer an explanation of the measurements which fol-

low, but simply touch on some of the theory which we feel may be relevant.

The requirements for studying multi-component condensates are two fold. First the

possibility of studying multi-component condensates is dependent on the collision prop-

erties of the given mixture. Many configurations suffer from the presence of scattering

resonances and scattering channels with negative s-wave scattering length, leading to

heating and condensate collapse respectively. Second, one requires a trapping poten-

tial capable of confining both states with non-trivial overlap. For magnetic traps this

equates to studying states which posses equal magnetic moments. In a conventional

magnetic trap, the spins of the atoms are frozen, constrained to follow the field direc-

tion. As a result, even though the atoms carry spin, they behave like scalar particles.

Possible multi-component condensates in magnetic traps are then restricted to different

hyperfine states of the same isotope, and mixtures of two different species of bosons.

Conversely, in an optical trap the spins of the atoms are essentially free, providing us

with an additional non-trivial degree of freedom. Possible multi-component conden-

sates in optical traps then also include different magnetic states of a single hyperfine

level. This leads to the natural distinction of multi-component condensates into two

categories: mixtures and spinors.

6.1.1 Spinor condensates

A spinor is defined as a multi-component condensate containing all magnetic sublevels

of a manifold of states with a single value of the hyperfine spin F . For the F = 1 state

which we consider here, this corresponds to a condensate in the three hyperfine spin

states mF = 1, 0, and −1. The internal states of a spinor condensate are then related by

rotational symmetry in spin space. Experimentally, long-lived spinor gases have been

realised in three spin manifolds: the F = 1 hyperfine manifold of both 23Na [188] and
87Rb [189], and also the upper F = 2 manifold of 87Rb [190]. The significance of such

a system is that while the total particle number is conserved, due to the possibility of

spin-exchange collisions the particle number for any one mF state is not. For example,

an atom in the mF = 1 state may inelastically scatter with another in the mF = −1

state to give two atoms in the mF = 0 state, or vice versa.

The general formalism of the low energy Hamiltonian for a spinor condensate is

given in [191, 192]. Collisions in the system are described by a pairwise interaction

that is rotationally invariant in the hyperfine spin space and preserves the hyperfine

spin of the individual atoms. Two identical bosons with F = 1 in an s-state of their
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relative motion can couple to make states with total angular momentum, F = 0 or

2, since the requirement that the wave function is symmetric under particle exchange

rules out collisions with F = 1. The general form of the interaction is then given by

V (r1 − r2) = δ(r1 − r2)(g0P0 + g2P2), (6.1)

where gF = 4π~2aF/m, the operators PF project the wave function of a pair of atoms

onto a state of total angular momentum F , and a0 and a2 are the corresponding scat-

tering lengths for the singlet and triplet channels respectively. This is usually expressed

in terms of the operators for the angular momentum of the two atoms, denoted by F1

and F2. The contact interaction may then be expressed as

g0P0 + g2P2 = c0 + c2F1 · F2, (6.2)

where

c0 =
4π~2

m

2a2 + a0

3
, c2 =

4π~2

m

a2 − a0

3
. (6.3)

The Hamiltonian in second quantised form is then

Ĥ =

∫
dr

(
~2

2m
∇Ψ̂†a · ∇Ψ̂a + VextΨ̂

†
aΨ̂a

+
c0

2
Ψ̂†aΨ̂

†
a′Ψ̂a′Ψ̂a +

c2

2
Ψ̂†aΨ̂

†
a′Fab · Fa′b′Ψ̂b′Ψ̂b

)
, (6.4)

where Ψ̂a is the field annihilation operator for an atom in the hyperfine state mF = a

(a = 1, 0,−1) at point r, and the angular momentum matrices are written as

Fx =
1√
2


0 1 0

1 0 1

0 1 0

 , Fy =
i√
2


0 −1 0

1 0 −1

0 1 0

 , Fz =


1 0 0

0 0 0

0 0 −1

 . (6.5)

We note that in the absence of an external magnetic field to break the symmetry, the

Hamiltonian is rotationally symmetric in spin space.

The time evolution of the field operator can be found by using the Heisenberg
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equation with the Hamiltonian (6.4):

i~
∂Ψ̂1

∂t
= − ~2

2m
∇2Ψ̂1 + [Vext − µ1]Ψ̂1 + (c0 + c2)

[∑
i

Ψ̂†i Ψ̂i

]
Ψ̂1

+ c2

(
Ψ̂†−1Ψ̂0Ψ̂0 − 2Ψ̂†−1Ψ̂−1Ψ̂1

)
, (6.6)

i~
∂Ψ̂0

∂t
= − ~2

2m
∇2Ψ̂0 + [Vext − µ0]Ψ̂0 + (c0 + c2)

[∑
i

Ψ̂†i Ψ̂i

]
Ψ̂0

+ c2

(
2Ψ̂†0Ψ̂1Ψ̂−1 − Ψ̂†0Ψ̂0Ψ̂0

)
, (6.7)

i~
∂Ψ̂−1

∂t
= − ~2

2m
∇2Ψ̂−1 + [Vext − µ−1]Ψ̂−1 + (c0 + c2)

[∑
i

Ψ̂†i Ψ̂i

]
Ψ̂−1

+ c2

(
Ψ̂†1Ψ̂0Ψ̂0 − 2Ψ̂†1Ψ̂1Ψ̂−1

)
, (6.8)

where the three chemical potentials µi, are defined such that the total particle number

and magnetisation are conserved. In this formalism one can explicitly identify the

spin mixing terms. Importantly, such spin exchanging collisions coherently transfer

populations between different spin states, with coherent oscillations observed in mF

populations due to such collisions [193, 194]. Coherent spin dynamics preserve the

coherence between the different internal state components of a spinor BEC, and many

of the characteristic phenomena of spinors, such as spontaneous magnetisation and

symmetry breaking, are physical consequences of this coherence. In a mixture where

such spin-exchange terms are absent, while there can still be coherence between the

internal state populations, such coherence does not affect how the physical system

evolves. Therefore, while a mixture can be considered to evolve as an incoherent overlap

of individual condensates, such a picture is not valid for spinor gases.

The significance of spin dependent interactions is determined by the value of c2,

which is generally much smaller in magnitude than c0. Nevertheless, the sign and

magnitude of c2 is found to have significant implications on the properties of a spinor

gas, including its ground state structure, spin wave modes, and possible topological

spin structures such as coreless vortex states. So far we have neglected any possible

effect due to long-range magnetic dipole-dipole interactions (MDDI). For most ultracold

atom experiments the MDDI is negligible in comparison to the spin-independent contact

interaction1. For spinor gases however, since the MDDI is both spin-dependent and

long-ranged, it is expected to play a significant role in determining the low field ground

state [197], and the long range formation of spin structures [198]. Experimental evidence

for the role of MDDI in spinor condensates has even been observed in [199], where the

spontaneous dissolution of long-wavelength spin textures in a 87Rb F = 1 spinor BEC

was attributed to long-range magnetic dipole interactions. As we have alluded to,

1This is not the case for condensates of 52Cr [195] and 164Dy [196], which have exceptionally large
magnetic dipole moments, where the energy associated with long-range dipole interactions can become
comparable to that of the mean-field interaction energy.
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spinor condensates exhibit a dizzying array of static and dynamic properties. Reviews

of some of the pertinent experiments and directions of research in this expansive field

are available in [200] and [201]. We now consider the often simpler case of a condensate

mixture, where spin exchange collisions are forbidden.

6.1.2 Mixtures

A mixture is defined as a multi-component condensate where the particle number for

each species is strictly conserved. If we consider a mixture of two-components labeled

1 and 2 with equal mass, which experience the same trapping potential, the GP energy

functional is given by [19]

E =

∫
dr

(
~2

2m
|∇Ψ1|2 + Vext(r)|Ψ1|2 +

~2

2m
|∇Ψ2|2 + Vext(r)|Ψ1|2

+
g11

2
|Ψ1|4 +

g22

2
|Ψ2|4 + g12|Ψ1|2|Ψ2|2

)
. (6.9)

The interaction parameters g11, g22, and g12 = g21 are related to the respective scat-

tering lengths a11, a22, and a12 by gij = 4π~2aij/m. Minimising this energy for fixed

particle number one obtains the time-independent coupled GP equations

− ~2

2m
∇2Ψ1 + Vext(r)Ψ1 + g11|Ψ1|2Ψ1 + g12|Ψ2|2Ψ1 = µ1Ψ1 (6.10)

− ~2

2m
∇2Ψ2 + Vext(r)Ψ2 + g22|Ψ2|2Ψ2 + g12|Ψ1|2Ψ2 = µ2Ψ2. (6.11)

We therefore see that for a mixture, each component simply experiences the mean field

potential arising from both populations. The coupling between the two components

through the intercomponent mean field as determined by the value of g12, yields struc-

tures and dynamics which are not present in a single-component BEC.

The two-component persistent current we study is a mixture of atoms in the

|F = 1,mF = 1〉 and |F = 1,mF = 0〉 magnetic states, and therefore is a spinor gas.

We note however that our system is in an external magnetic field of 10 G, and therefore

due to the quadratic Zeeman shift, the energy gap between the mF = −1 and mF = 0

states is 14.4 kHz larger than the energy gap between the populated mF = 1 and

mF = 0 states. Spin exchange collisions to the mF = −1 are therefore energetically

prohibited, and for an initial state where the mF = −1 state is not populated, the pop-

ulations of the mF = 1 and mF = 0 states are conserved. Taking the time dependent

GPE equations for a spinor in (6.6) and (6.7) and removing spin-exchange terms, one

retrieves the equations of motion for a mixture with inter and intra-species scattering

lengths given by

a11 = a2, a00 =
2a2 + a0

3
, a10 = a2. (6.12)
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We therefore anticipate our spinor condensate to be described by a mixture with the

appropriate scattering lengths given above in terms of the singlet and triplet scatter-

ing lengths. Such a view is confirmed experimentally by the fact that we observe no

population of the mF = −1 state due to coherent scattering from the mF = 0 state.

Calculation of the scattering lengths in terms of singlet and triplet scattering lengths

can also be done by decomposing the states of total angular momentum |F ,mF 〉 using

the appropriate Clebsch-Gordan coefficients

|F ,mF 〉 =

m1=F1∑
m1=−F1

m2=F2∑
m2=−F2

|F1,mF1, F2,mF2〉 〈F1, F2;mF1,mF2| |F ,mF 〉 , (6.13)

where F1 = 1 and F2 = 1. One can then express the state of the two incident particles

|F,mF1, F,mF2〉 in terms of states of their combined total angular momentum F :

|mF1 = 1,mF2 = 1〉 = |F = 2,mF = 2〉 (6.14)

|mF1 = 0,mF2 = 0〉 =

√
2

3
|F = 2,mF = 0〉 −

√
1

3
|F = 0,mF = 0〉 (6.15)

1√
2

(|mF1 = 0,mF2 = 1〉+ |mF1 = 1,mF2 = 0〉) = |F = 2,mF = 1〉 . (6.16)

from which one confirms the results of (6.12). The values of a0 and a2 for the F = 1

state of 87Rb are given as [68, 202] a0 = (101.78 ± 0.2)aB and a2 = (100.4 ± 0.1)aB,

where aB is the Bohr radius. From this one calculates the relevant inter and intra-

species scattering lengths for our system as

a11 = (100.4± 0.1)aB, a00 = (100.86± 0.13)aB, a10 = (100.4± 0.1)aB. (6.17)

As we discuss in Section 6.1.4, the fact that these values are so close has important

consequences for the ground state and dynamics of our system. Strictly speaking, one

may only decompose the scattering lengths in terms of singlet and triplet channels

at low magnetic fields where F is a good quantum number [191]. We assume this

decomposition is valid in our experiment since the associated Zeeman energies are

much smaller than the hyperfine splitting.

In this chapter we use the pseudo-spin representation, where our two-component

mixture is represented by a spin-1/2 BEC [203]. Introducing the normalised spinor

χ(r) = [χ1, χ2]T = [|χ1|eiθ1 , |χ2|eiθ2 ]T , we can decompose the wave function of each

component as Ψi =
√
n(r)χi(r), where n(r) is the total density of both components.

Defining the spin density as S = χ(r)†σχ(r), where σ is the Pauli spin matrix, the unit

spin vector is then defined as 
Sx

Sy

Sz

 =


2Re(χ1χ

∗
2)

2Im(χ1χ
∗
2)

|χ1|2 − |χ2|2

 . (6.18)
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We therefore represent our two-component spinor BEC as a unit vector on the Bloch

sphere, where mF = 1 and mF = 0 are the up and down components of the spin 1/2

spinor respectively. This formalism implies a relative phase coherence between the up

and down states. Decoherence then corresponds to a shortening of the state vector

from |S| = 1. The energy functional (6.9) can then be written in the form

E =

∫
dr

(
~2

2m
(∇
√
n)2 +

~2n

8m
(∇S)2 +

mn

2
v2

eff

+Vext +
n2

2
(γ0 + γ1Sz + γ2S

2
z )

)
, (6.19)

where we define the coupling constants

γ0 =
g11 + g22 + 2g12

4
,

γ1 =
g11 − g22

2
, (6.20)

γ2 =
g11 + g22 − 2g12

4
,

the spin stiffness

(∇S)2 = (∇Sx)2 + (∇Sy)2 + (∇Sz)2, (6.21)

and the effective velocity

veff =
~

2im
(χ∗1∇χ1 − χ1∇χ∗1 + χ∗2∇χ2 − χ2∇χ∗2) (6.22)

=
~

2m

[
∇(θ1 + θ2) +

Sz(Sy∇Sx − Sx∇Sy)
S2
x + S2

y

]
, (6.23)

which depends both on the gradient of the total phase and that of the pseudo-spin. This

form illustrates that for a general mixture where g11 6= g22 6= g12, the system experiences

a fictitious interaction-induced linear and quadratic Zeeman shift which breaks the

rotational symmetry in our pseudo-spin space. The form of the effective velocity also

has important connotations for the stability of persistent currents in a Bose mixture.

In general we note that there is now an interplay between mass currents, associated

with the gradient of the phase, and spatial variations in the spin vector. Formation

of spin textures is energetically costly due to the presence of the (∇S)2 term, which

introduces a spin stiffness to the system. This equation is analogous to the classical

nonlinear sigma model which describes Heisenberg ferromagnets.

6.1.3 Dynamic stability

In Chapter 5 we found that the onset for superflow decay by phase slips could be

understood by considering the excitation spectrum of the system. In that same spirit

we now consider the excitation spectrum for a two-component mixture described by

equations (6.10) and (6.11). For a uniform system the time-dependent GPE takes the
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form

i~
∂Ψ1

∂t
=

[
− ~2

2m
∇2 + g11|Ψ1|2 + g12|Ψ2|2

]
Ψ1 (6.24)

i~
∂Ψ2

∂t
=

[
− ~2

2m
∇2 + g22|Ψ2|2 + g12|Ψ1|2

]
Ψ2, (6.25)

where the wavefunctions are normalised as |Ψi|2 = ni, where ni = Ni/V is the particle

density for component i. As before, when we calculated the excitations of a single

species uniform condensate in Section 2.3.1, we consider plane wave perturbations to

the ground state of the form

Ψi(t) = e−iµit/~(Ψ
(0)
i + δΨi(t)), (6.26)

where

δΨi(t) = uie
−i(ωt−q·r) + v∗i e

i(ωt−q·r) (6.27)

µi = giini + gijnj , (6.28)

for the two components {i, j} = {1, 2}. Inserting this into the coupled, time-dependent

GP equations we obtain the matrix equation

~ω


u1

v1

u2

v2

 =


εq + g11n1 g11n1 g12

√
n1n2 g12

√
n1n2

−g11n1 −εq − g11n1 −g12
√
n1n2 −g12

√
n1n2

g12
√
n1n2 g12

√
n1n2 εq + g22n2 g22n2

−g12
√
n1n2 −g12

√
n1n2 −g22n2 −εq − g22n2

 , (6.29)

where εq = ~2q2/2m is the free particle energy. The energies of the excitations are then

given by the determinant of this matrix as

(~ω)2 =
1

2
(ε21 + ε22)± 1

2

√
(ε21 − ε22)2 + 16ε2qn1n2g2

12, (6.30)

where

ε21 = 2g11n1εq + ε2q (6.31)

ε22 = 2g22n2εq + ε2q . (6.32)

In the limit that we remove the inter-species coupling (g12 = 0), or the density of

one of the components goes to zero, we retrieve the excitation spectrum for a uniform

single species condensate which we derived in Section 2.3.1. The condition for dynamic

stability is that all the eigenfrequencies are real. From (6.30) this correspond to the

condition

g11g22 > g12
2. (6.33)
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This is often expressed as the criterion for the two components to be miscible. If this

condition is not met, the mean field energy each component experiences from the other

species is greater than that which it experiences from itself, and hence the lowest energy

configuration is for the two-components to separate spatially. If this is the case, the

time scale of this phase separation is given by the value of the largest imaginary eigen-

value, and the length scale of the spin textures which form is given by the wavenumber

q associated with this eigenfrequency. The dynamics of such phase separation have

been observed experimentally in [204–206].

For our two components, mF = 1 and mF = 0, the scattering lengths (6.17) are

such that we anticipate our system to be dynamically stable and therefore miscible.

As the scattering lengths are so close however, the maximum energy barrier towards

phase separation, occurring for equal populations in each component, is only 3 Hz per

particle. We therefore find that our two-component system is extremely sensitive to

external factors such as magnetic field gradients and the polarisation of our optical

trap, which can differentiate between the two states and overcome this small energy

barrier towards phase separation. The cancelation of such effects is discussed in Section

6.1.4. Due to fluctuations of both the experiment, and inherent thermal and quantum

fluctuations of the system [148], over very long times we find the system is unstable

towards the formation of spin textures. Our measurements of this effect are presented

in Section 6.1.5.

Our calculations of the excitation spectrum for a two-component condensate in

a ring are shown in figure 6.1. This calculation was done by extending our numerical

calculation for the 2D single species BEC in a ring (explained in Appendix B) to the

two-component case. A similar result is obtained by mapping the excitation spectrum

calculated for a uniform two-component condensate in (6.30), to that of a one dimen-

sional system on a ring. This amounts to simply replacing the interaction parameters,

gij , with effective 1D parameters averaged over the radial and vertical directions. Due

to the very small spin dependent energy, we find that the dispersion relation is very

close to quadratic. The energy barrier to formation of long-wavelength excitations is

therefore very small, however the restriction that the wavefunction is single valued leads

to quantised values of the angular wavenumber m, which increases this somewhat. The

form of the excitation spectrum is very similar for all ratios of the two populations. The

inset, which shows the spectrum at small values of m for three different ratios of the

two populations, actually shows that the case of equal populations in each component

is the most stable. As the population imbalance becomes larger the system becomes

less stable.

Unlike the single species case, inferring the stability of persistent currents from cal-

culations of dynamic stability is clearly not correct for the two-component case. All

this calculation tells us is that if one adds a small admixture of a second component

to the system, the energy barrier to creating spin textures is very small. As the ad-
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Figure 6.1: Excitation spectrum for an annular two-component BEC: Plotted is the excitation
energy (in units of ~ωr) versus angular wavenumber for numerical solutions of the 2D GPE for a
two-component mixture in a ring with equal populations in the mF = 1 and mF = 0 states. This
calculation predicts an excitation energy close to quadratic in m, and therefore a small energy
barrier to the formation of long-wavelength excitations. Inset is the initial part of the slope for
the three different mixture populations N(mF = 1) : N(mF = 0) = 0.5 : 0.5, 0.75 : 0.25, and
0.98 : 0.02, as indicated by the black dots, blue triangles, and red triangles respectively. The
spectrum is close to identical under exchange of the relative populations of the two components,
N(mF = 1) and N(mF = 0).

mixture becomes larger, the energy cost of creating such spin textures increases in a

trivial manner. The stability of the system against forming such excitations does not

directly tell us about the stability of the system against dissipating angular momentum.

Indeed such a calculation shows us that if we take the single species system, which we

have shown to possess a large critical velocity, and add a vanishing small admixture of

the second component, this critical velocity all but vanishes. Such a discontinuity in

behaviour is unphysical, and clearly indicates that the excitations we are considering

in the two-component case are distinct from those in the single-component case, and

do not relate directly to the decay of supercurrents.

The primary tool by which we were able to understand the onset of superfluid in-

stability in the single species case does not then seem to apply to the two-component

case. As we will show, while we have been able to accurately measure the conditions

under which a two-component persistent current becomes unstable, as yet we do not

fully understand this condition. This problem is therefore perfectly poised for further

theoretical work to both explain our findings, and point the way to future experiments.

6.1.4 Phase separation

To observe long-lived persistent currents in a two-component condensate, it was first

important to remove environmental factors which would differentiate between the two
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Figure 6.2: Phase separation: (a) Absorption images of the mF = 1 (|↑〉) and mF = 0 (|↓〉)
states phase separating in the presence of a weak magnetic field gradient. The surface plot
shows the total density, which is observed to remain constant during the phase separation. The
colour of the surface indicates the relative population of the two components. (b) Absorption
image of the mF = 1 state only, in an ` = 5 LG beam ring trap in the presence of a small
amount of leakage Gaussian light. The density of the mF = 0 state is the inverse of this, such
that the total density is uniform around the ring.

states. For the mF = 1 and mF = 0 states which have different magnetic moments,

the primary concern is magnetic field gradients. In the presence of in-plane gradients

the two-component gas is extremely susceptible to phase separation. In figure 6.2 (a)

we show in-trap absorption images of the mF = 1 (|↑〉) and mF = 0 (|↓〉) states phase

separating due to a small field gradient. The total density is uniform around the ring,

and only by simultaneously trapping two components can one detect the presence of the

magnetic gradient. The orientation of the phase separation is repeatable, and therefore

we were able to cancel this gradient by the use of two orthogonal compensation coils

positioned close to the atoms. The sensitivity of the two-component gas is remarkable,

and by ensuring the two states showed perfect and repeatable spatial overlap even after

10 seconds hold time, we minimised in-plane magnetic gradients to < 5× 10−5 G/cm,

roughly equivalent to an energy difference across the ring of 1 Hz per particle.

A second, less obvious, cause of phase separation turned out to be the imperfect

polarisation of our ring trap light. As derived in Section 4.3.2, the dipole potential for

a multilevel system depends on the product of the polarisation of the trapping light

and mF state of the atom. Our LG trapping beam has equal components of σ+ and σ−

polarised light, and hence should trap all mF states equally. In reality, slight misalign-

ment with respect to the field direction or polarisation dependent reflections will cause

a marginal imbalance in the polarisations, and hence one mF state will see a deeper

trap than the other. For most situations this simply manifests as a small global shift

in the potential and has no effect on the experiment. Due to our Raman setup (figure

4.7), a small amount of LG light propagates along the Gaussian path and does not

pick up a 2π` phase winding. Interference of these two beams at the atoms creates a
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small azimuthal corrugation in the LG intensity, which for a single species condensate

is undetectable. If we trap two species however, the combination of this interference

and the imperfect polarisation, cause a phase separation of the like shown in figure 6.2

(b). The state which experiences the slightly deeper potential moves into the minima

of the corrugation, and the other spin state fills the gaps to preserve the total density.

This effect appears identical to the matter-wave interference of Section 4.4.1, but is

simply due to the trapping potential. To remove this effect we place a shutter in the

path of the Gaussian light, which is only briefly opened during the Raman transfer.

Having canceled these two effects, we observe the two states remain mixed after

10 seconds hold time. As shown in the next Section, at even longer times we find the

system is unstable towards forming variations in the densities of the two individual

components. Neither the direction nor degree of such spin textures is repeatable how-

ever, and therefore we cannot identify the source of these dynamics as being either

technical, or as inherent fluctuations present in the two-component condensate.

6.1.5 Spin domain formation

There have been many studies on spin mixing dynamics in degenerate spinor Bose gases

[200]. Such dynamics are associated with the redistribution of atomic populations

among spin states and the formation of spin domains and spin textures. Of those

experiments, [206] and [207] also studied two-component F = 1 spinor gases in the

presence of large quadratic Zeeman shifts, where spin-exchange scattering to the third

mF state was energetically eliminated. Both of these studies used immiscible mixtures,

where the gas was dynamically unstable to phase separation. Due to the small spin

dependent energies, such systems take several seconds to reach equilibrium, and exhibit

interesting features such as the growth and coarsening of large scale spin domains which

are nucleated by initial fluctuations.

In our case of mF = 1 and mF = 0, the two states are miscible. To characterise our

two-component state we define the longitudinal spin polarisation

Pz =
N↑ −N↓
N↑ +N↓

, (6.34)

where N↑(N↓) is the number of atoms in the mF = 1(mF = 0) state. Using an

RF π/2 pulse we prepare an initial superposition state, |Ψ〉 = (|↑〉 + |↓〉)/
√

2 with

equal magnetic state populations (Pz = 0), and then hold for various times. We then

measure the local variation of Pz by imaging only the mF = 1 state using a microwave

π pulse to transfer the population to the imageable |2, 2〉 state. In our system, for the

starting atom number, the width of the annulus (Rr ≈ 6 µm) is comparable to the spin

healing length (ξs = 1/
√

8πna0−a2
3 ≈ 4 µm)1 [199]. As the atom number decays during

1The spin healing length is similarly determined as the length below which the kinetic energy of
spins wins over the spin-dependent interaction energy.
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6.1 Multi-component condensates

Figure 6.3: Spin domain formation: (a) Using an RF π/2 pulse at t = 0 we prepare a spin-
superposition state with equal populations in each magnetic state (Pz = 0). Allowing the
state to evolve in time, the superposition decoheres and the transverse spin polarisation decays
(Section 6.3). We also observe a spreading in Pz values about the mean which we detect by
imaging only the |↑〉 state using a microwave transfer. (b) Evolution of the variance of Pz with
hold time. Each data point is an average of 8 images, and normalised to control shots which
account for variations in the total density due to the imperfect trapping potential. (c) The
distribution of measured local Pz as a function of hold time. Insets show typical absorption
images of the |↑〉 state only, at short and long hold times. At all times the total density is
uniform.

evolution, the width of the annulus decreases while ξs increases, and hence the spin

degree of freedom becomes increasingly one-dimensional. We therefore approximate

that the spin structure only varies significantly azimuthally around the ring and not

across the width of the annulus. Hence we integrate the density over the radial direction

when measuring Pz.

The results of this measurement are shown in figure 6.3. While the total Pz is

conserved, we observe the formation of local spin domains of high and low Pz, the

variance of which is plotted against hold time in figure 6.3 (b). We find the fluctuations

in Pz grow over the first 20 seconds and then saturate. The saturation value is close to

the value of 1/3, which one would obtain if the distribution of Pz values was uniform
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between −1 and 1. In figure 6.3 (c) we plot the evolution of the Pz distribution with

time. At short times the Pz values are tightly distributed about the initial Pz = 0

value, corresponding to all state vectors lying on the equator of the Bloch sphere.

With increasing hold time an increasing range of Pz values is observed, corresponding

to atoms moving off the equator of the Bloch sphere. At very long times the distribution

is close to uniform for all Pz values, corresponding to a uniform distribution of state

vectors over the Bloch sphere. This particular data is taken for an initial superposition

state which is rotating with q = 3 at t = 0. The same evolution of Pz values is observed

for the non-rotating case. The fact that the distribution of Pz values shows no angular

dependence around the ring suggests this is not a technical artifact resulting from

remnant magnetic gradients.

If one only considers the s-wave contact interaction, then our spinor BEC should

be dynamically stable and the observed formation of spin textures at long hold times

is difficult to explain. The fact that the energy barrier to phase separation is so small

though, means additional mechanisms which one usually neglects may have a significant

effect. In the experiment of Vengalatorre et al. [199] for example, it was found for a
87Rb F = 1 spinor condensate that the role of magnetic dipole-dipole interactions

could have a significant effect on the stability of spin structures. The influence of

dipolar interactions on the spinor gas was evidenced by the spontaneous dissolution of

deliberately imposed long-wavelength spin structures, in favour of a finely modulated

pattern of spin domains. This effect was ascribed to the magnetic dipole energy which

disfavours the homogenously magnetised state. One could therefore hypothesise that

the spin dynamics we observe may similarly be driven by magnetic dipole interactions.

6.2 Two-component supercurrent

To prepare our two-component supercurrent we first prepare a single-component per-

sistent current using the same method explained in Chapter 4. As before, we load

our condensate into the ring trap created by intersecting the sheet laser beam with an

LG` beam of ` = 3. Due to changes in the sheet beam optics, the vertical trapping

frequency is reduced to ωz = 2π × 340 Hz. Initially we load about N ≈ 150 × 103

atoms into the ring trap, which we then hold for 6 seconds to reduce the starting atom

number for our measurements to N ≈ 100 × 103. This reduction in atom number has

no discernible effect on the supercurrent stability, but is found to make the angular

momentum state of the two-component supercurrent easier to measure. Due to spin

dynamics, the presence of both spin states leads to azimuthal density variations in the

density holes which we observe at long TOF. These density variations can make the

radius of the hole, and hence the angular momentum of the state, harder to accurately

quantify. Empirically we find a reduced atom number improves our fitting procedure

and enhances the signal of quantisation.
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Figure 6.4: Preparation of a two-component supercurrent: (a) Supercurrent is induced in a
single component condensate by a Raman transfer of atoms between the two spin states |↑〉
and |↓〉, using the LG beam and an auxiliary Gaussian (G) beam. A two-component gas is
then created by coupling the same |↑〉 and |↓〉 states with an RF field which imparts no angular
momentum to the system. Here we denote the energy difference between the stationary and
rotating |↑〉 state of q2Er, with Er/h ≈ 0.4 Hz. (b) Plot of measured spin polarisation, Pz,
versus RF pulse time. By varying the time of the RF pulse between tRF = 0 and tRF = tπ = 140
µs we can prepare a state of any given Pz. Also shown is the Bloch sphere representation of the
rotation of the initial state vector of our spin 1/2 system with RF pulse time. The blue arrow
denotes our two-component state vector, while the green arrow denotes the effective magnetic
field created by the RF coupling, which the state vector then precesses about.

To set the gas into rotation the auxiliary Gaussian beam is flashed on briefly, trans-

ferring the atoms via a two-photon Raman transfer between the initial |F = 1,mF = 1〉
state and the final |F = 1,mF = 0〉 state with angular momentum 3~ per atom. Any

atoms which are not transferred are removed from the trap by a microwave transfer and

resonant imaging pulse, as described in Section 4.3.1, creating a pure single-component

persistent current. To amplify any difference between the single and two-component

supercurrent, we maximise the single-component superflow lifetime by reducing the in-

tensity of the LG trapping light to create the smoothest trap possible. Our final ring

trap has radius 12 µm, radial trapping frequency ωr = 2π × (53± 5) Hz, and the trap

depth is about twice the BEC chemical potential, µ0/h ≈ 750 Hz. At this point the

azimuthal variations in the local chemical potential are less than 10% and the single

component superflow persists for up to two minutes, limited only by the eventual atom

loss.

The |F = 1,mF = 1〉 and |F = 1,mF = 0〉 states also define the |↑〉 and |↓〉 states,

respectively, of the spin space for our two-component supercurrents. Since the mF = 1

and 0 states are split in an external field of 10 G, the mF = −1 state is detuned from

Raman and RF resonances by 14.4 kHz. We therefore observe negligible population of

the mF = −1 state during state transfers, and population of the mF = −1 state by

spin exchange collisions is prohibited by energy conservation. To first order, the large
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Figure 6.5: Detection of two-component supercurrent: (a) Time-of-flight absorption image of
the atoms, with spin states separated using a Stern-Gerlach gradient. The rotational state q
is deduced from the radius R characterising the central hole in the density distribution. The
longitudinal polarisation Pz is measured directly from the image using the relative populations
of the two spin states. The image shown was taken after t = 4 s of rotation; Pz = 0.44 and
q = 3 for both spin states. (b) Histogram of ≈ 900 measurements of R at various Pz and t.
Once again the background colours indicate the corresponding q state for a given R, with q = 3,
2, 1, and 0 indicated by the blue, green, red, and black regions respectively.

bias field has eliminated the presence of the mF = −1 state, reducing the parameter

space of our system of our F = 1 spinor to a two-component mixture.

The protocol for preparing a two-component supercurrent is illustrated in figure

6.4 (a). After preparing a pure |q = 3, ↓〉 rotating state, we couple |↑〉 and |↓〉 by an

RF field which carries no orbital angular momentum and does not affect the motional

state of the atoms. As shown in figure 6.4 (b), by varying the length of the RF pulse

tRF in the range 0 ≤ tRF ≤ tπ, one can prepare a state of arbitrary longitudinal spin

polarisation, Pz. The prepared state is then in a superposition of the mF = 1 and

mF = 0 state, both rotating in the same direction with angular momentum 3~ per

atom:

|Ψ(φ)〉 = (sin(φ/2) |↑〉+ cos(φ/2) |↓〉)e−iqθ. (6.35)

Here φ = ΩRF tRF , where ΩRF is the RF Rabi frequency. In this state Pz = cos(φ) and

the gas is still fully spin polarised with polarisation vector ~P = [sin(φ), 0,− cos(φ)] and

|~P | ≡ P = 1.

After preparing a co-rotating (q = 3) two-component supercurrent in a specific

spin state, we let it evolve in the ring trap for a time t and then probe it by absorption

imaging after 29 ms time-of-flight expansion as explained in Section 4.4.2. We separate

the two spin components with a Stern-Gerlach gradient and directly detect the longi-

tudinal spin polarisation, Pz, by measuring the populations of the two spin states. As

before, the rotational state, 0 ≤ q ≤ 3, is seen in the size R of the central density hole
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Figure 6.6: Single versus two-component supercurrent stability: (a) In a pure |↑〉 state with
Pz = 1 supercurrent is observed to persist for over 2 minutes, with no phase slips occurring for
≈ 90 s. (b) At Pz = 0 the first phase slip occurs within 5 seconds and we observe no rotation
beyond 20 seconds. (c) Total atom number decay for Pz = 1 in open red symbols, and Pz = 0
in solid blue symbols. Dashed lines are double-exponential fits.

in the atomic distribution, arising due to the centrifugal barrier. An example image is

shown in figure 6.5 (a). A histogram of fitted R values for the full range of Pz values

and hold times in the range 0 ≤ t ≤ 20 s1 is shown in figure 6.5 (b). The R values

are clearly quantised for all Pz, allowing us to determine q with near perfect fidelity.

For spin polarisations sufficiently close to zero, where we are able to assign a q state

to both spin states, we always observe the two components to be in the same q state.

This explicitly identifies that the superflow decay mechanism is once again a 2π phase

slip which affects both spin states simultaneously. Our observation do not however

preclude the possibility that the supercurrent may first only decay in one of the spin

components, after which the relative flow velocity between the two states causes a rapid

secondary phase slip in the faster component.
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6.2.1 Single versus two-component supercurrrent

In figure 6.6 we illustrate the dramatic difference between superflow stability in a Pz = 1

single-component gas and a Pz = 0 two-component system with equal populations in

each spin state. The two different Pz states are created respectively, by a (140 µs) π

and (70 µs) π/2 RF pulse at t = 0. In the pure |↑〉 state (figure 6.6 (a)) the current

persists for over two minutes, with the BEC always remaining in the q = 3 state for

≈ 90 s. In contrast at Pz = 0 (figure 6.6 (b)) the first phase slip occurs within 5 seconds

and the current completely decays within 20 seconds.

As we demonstrated in Chapter 5, supercurrent stability generally depends on the

number of condensed atoms and at Pz = 0 the atom number per spin state is halved.

However, from the N decay curved in figure 6.6 (c) we see that this alone cannot explain

the difference in superflow stability. At Pz = 1 rotation still persists for N ≈ 104 while

at Pz = 0 it stops already at N > 4× 104. Moreover, if we apply a π/2 pulse at t = 0

but then immediately remove all the |↑〉 atoms from the trap using a combination of

microwave π pulse and resonant light pulse, we observe the pure |↓〉 state with half the

initial atom number is once again stable, with supercurrent again persisting for over a

minute. This unambiguously confirms that in figure 6.6 (b) the superflow is inhibited by

the presence of both spin components. We therefore conclude that the two-component

superflow decay mechanism is facilitated by the internal degrees of freedom introduced

by the pseudo-spin, and is different from the single-component mechanism.

6.2.2 Stability phase diagram

We now turn to a quantitative study of the supercurrent stability as a function of the

spin-population imbalance (see figure 6.7). We tune Pz by varying the length tRF of

the RF pulse applied at t = 0, and measure the q state of the majority spin component,

|↑〉, as a function of t. Whenever the radius R is fittable for the minority component

we get the same q state for both spin components in > 99% of cases. However, for

N↓ < 104 we cannot determine q for the minority component.

Based on over 1600 measurements of q(Pz, t), in figure 6.7 we reconstruct the com-

plete current stability phase diagram for 0 ≤ Pz ≤ 1. The contour plot of 〈q(Pz, t)〉
is obtained by spline interpolation through a 3D mesh of data points with integer q

values. The blue-shaded region corresponds to rotation times for which no phase slips

occur, whereas the black-shaded region corresponds to times at which all rotation has

decayed. We clearly distinguish two qualitatively different regimes. For large Pz the

superflow is fundamentally stable and limited only by the atom number decay. In this

regime the additional internal degree of freedom is insufficient to facilitate decay be-

yond that present in the scalar BEC case. For low Pz the current starts to decay within

1Over this time the decay in particle number is sufficiently small that the weak dependence of
R on N can be neglected. To account for this effect at longer hold times we establish quantisation
independently for a given t before assigning q states.
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Figure 6.7: Supercurrent stability in a partially spin-polarised gas: The statistically averaged
supercurrent state, 〈q〉, of the majority spin component is shown as a function of Pz and
the evolution time t. The contour plot is based on over 1600 measurements of q(Pz, t). The
transition between stable and unstable current regimes occurs at 0.6 < Pz < 0.7. In the stable
regime the current eventually decays due to the atom number decay, equivalent to the eventual
decay of the scalar-condensate superflow studied in Chapter 5.

a few seconds. A sharp transition between the two regimes occurs at 0.6 < Pz < 0.7.

Based on an additional ≈ 500 measurements we find close to symmetric behaviour for

the Pz < 0 portion of the diagram. One small difference is that no phase slips occur for

about 70 seconds for Pz → −1, as apposed to 90 seconds for Pz → 1. The transition

between the two stability regimes is observed to occur at approximately the same value

of |Pz|. This slight asymmetry between the two spin states might be attributed to the

existence of the mF = −1 state, or the presence of small terms in (6.19) which depend

explicitly on Sz, breaking the symmetry between the mF = 1 and mF = 0 states.

6.3 Spin dephasing

To fully understand these observations, we need to distinguish a coherent superposition

of |↑〉 and |↓〉 states from an incoherent mixture. The RF pulse at t = 0 corresponds to

rotation around the y axis on the Bloch sphere and puts the BEC into a superposition

state, |Ψ(φ)〉, with a well defined phase relation between the two components. Impor-

tantly, this new state is still a pure BEC corresponding to the macroscopic occupation

of a single state. Due to the near perfect spin-symmetry of our two state basis aris-

ing from the almost equal inter and intra-state scattering lengths, this rotated state

should have almost identical properties to the original state. The significant difference

however, is that the superposition state is no longer an eigenstate of the system. We

therefore find that while the longitudinal polarisation of the state Pz is a conserved
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Figure 6.8: Phase diffusion: (a) Ramsey-style experiment to study the decay of transverse
spin polarisation with time. Starting in the pure rotating (q = 3) |↓〉 state, we apply an RF π/2

pulse to rotate the state vector onto the purely transverse spin state, ~P = (1, 0, 0). Allowing
this state to evolve for a variable hold time, we then apply a second RF π/2 pulse which maps

the decaying |~P | into Pz. The Pz signal which we observe varies sinusoidally with the relative

RF phase δRF , and with an amplitude equal to the length of the global state vector, |~P |. (b) By
measuring the variance of the Pz values observed, we obtain a direct measure of the transverse
polarisation decay. The solid red line is a double-exponential fit which gives the decay function
f(t).

quantity, the relative phase between the two components undergoes a complicated evo-

lution causing the transverse polarisation to decay. This decohered state can now no

longer be considered a single pure BEC, but corresponds to a mixture of two macro-

scopically occupied |↑〉 and |↓〉 states.

To study this decay of transverse polarisation, we perform a Ramsey-type exper-

iment, illustrated in figure 6.8 (a). Starting in the pure |↓〉 state we apply two π/2

RF pulses separated by time t and then measure Pz. The first pulse rotates the state

vector on the Bloch sphere about the y axis, creating a purely transverse spin state

~P = (1, 0, 0) with a well-defined relative phase between the two components. The

relative phase between the the two states evolves at a rate proportional to the local

difference in chemical potentials between the two states ω21, which in general is a func-
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tion of both time and space. During the evolution time, couplings to the environment,

quantum fluctuations [148], and finite temperature effects [208] can induce additional

diffusive precession of the relative phase, leading to an uncertainty in its value. We

illustrate this uncertainty in the relative phase as a probability distribution function

of the state vector on the Bloch sphere which spreads with time and acts to shorten

the global state vector for the whole system. During the same time, the RF coupling

drive accumulates a phase ωRF t. The second RF π/2 pulse with phase δRF relative to

the first pulse then maps the transverse polarisation onto longitudinal polarisation Pz,

which we measure by separating the two states in TOF with a Stern-Gerlach field.

δRF (t) =

∫ t

0
ω21dt− ωRF t. (6.36)

Pz then varies sinusoidally as a function of δRF

Pz(t) = V(t) cos(δRF (t)), (6.37)

where the coherence between the two state is quantified by the visibility of the Ramsey

fringes, V(t) = P⊥, where P⊥ =
√
P 2 − P 2

z is the transverse polarisation.

Due to the very long spin-coherence time we observe, shot-to-shot variations in the

relative phase δRF prevent us from measuring V directly by observing Ramsey fringes.

Instead we take 40 shots at a given hold time t and infer V(t) from the standard

deviation of the Pz values we observe. Assuming sufficient fluctuations that we sample

δRF uniformly in the range 0 to 2π, the probability distribution of Pz values is given

by

P(Pz → Pz + dPz) =
dPz

πV
√

1− (Pz/V)2
. (6.38)

The variance in Pz is then directly related to the Ramsey visibility, and hence transverse

polarisation, by

σ2(Pz) =
P 2
⊥
2
. (6.39)

Using this method, we measure the decay of P⊥ as a function of hold time, as shown in

figure 6.8 (b). We see the phase coherence decays very slowly with a characteristic spin-

coherence time tcoh ∼ 10 s. This means that in the unstable regime in figure 6.7 phase

slips occur already at t . tcoh, when we cannot equate P and Pz. By fitting a double

exponential to P 2
⊥(t) we obtain a decay function f(t) which allows us to calculate the

total spin polarisation as a function of time

P (t) =
√
P 2
z + (1− P 2

z )f(t). (6.40)

Here we have assumed to first order that we can neglect the dependence of f(t) on the

value of Pz, simply using the characteristic decay function we measure at Pz = 0 to

infer the decay of transverse polarisation at all Pz.

165



6.4 Coherently coupled two-component supercurrent

Figure 6.9: Adiabatic dressing of the spin state: (a) By sweeping the RF frequency from far
above resonance to zero detuning, the effective magnetic field rotates from the −z direction
to the y direction. Adiabatic following transforms the initial |↓〉 with Pz = −1 to the dressed
Pz = 0 state |y〉, which is now an eigenstate of the effective Hamiltonian. Retaining the
RF coupling during the evolution time, the dressed state does not undergo phase diffusion and
remains a pure single component state. (b) This dressed state now exhibits long-lived persistent
currents, even though Pz = 0. This confirms that the relevant quantity is the absolute spin
polarisation P , and not Pz.

6.4 Coherently coupled two-component supercurrent

To further understand the role of transverse coherence in preserving supercurrent sta-

bility we also perform a complimentary experiment in which we adiabatically dress the

rotating BEC with the RF field. In the presence of the RF field of frequency ωRF ,

the effective magnetic field is ~Beff = (2~/µB)(0,ΩR,−δ), where µB is the Bohr mag-

neton and δ = ωRF − µBB/(2~) is the detuning from resonance (derived in Section

3.2.2). For large detuning, ~Beff ∝ −~z, and on resonance ~Beff ∝ ~y. Starting in the

initial rotating |↓〉 state, we apply an RF field far detuned (100 kHz) above resonance

with a Rabi frequency ΩR ≈ 25 kHz. At such a large detuning the RF dressed state

is effectively equivalent to the |↓〉 state, hence we have loaded into the lowest band of

the dressed state. At t = 0 we adiabatically sweep δ to zero over 200 ms, rotating

the direction of the effective magnetic field from −~z to ~y. The system remains in the

lowest dressed state, adiabatically following the effective field, thus preparing a Pz = 0

superposition state |y〉 = (|↑〉+i |↓〉)/
√

2 (figure 6.9 (a)). At this point, |y〉 is equivalent

to the |Ψ(π/2)〉 state prepare by an RF pulse, which does not show long-term current
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stability, decaying form the q = 3 state within a few seconds. However, if we leave the

RF field on during the in-trap evolution, |y〉 is an eigenstate of the Hamiltonian and

the coherence between |↑〉 and |↓〉 does not decay1. In this case Pz = 0 supercurrent is

stable and persists for more than a minute, as shown in figure 6.9 (b).

These experiments clearly show that for analysing current stability in a partially

polarised gas we must distinguish Pz and |~P |. The long phase decoherence times we

measure suggest that the non-zero lifetime of supercurrents we observe at all Pz arises

due to the non-zero time taken by the system to evolve from an initially pure single-

component BEC with |~P | = 1, to an incoherent mixture with |~P | < 1. Secondly, the

long lived supercurrrents observed in the Pz = 0 RF-dressed state confirms that, due

to the spin-symmetry of our system, the value of Pz alone has no bearing on the decay

of superflow. Instead, the supercurrent stability can be attributed to the RF coupling

modifying the Hamiltonian such that the Pz = 0 state is now an eigenstate of the

system, and therefore in the absence of phase decoherence |~P | remains equal to unity.

6.5 Spin symmetric phase diagram

With this understanding, we now quantitatively characterise the onset of the supercur-

rent decay in figure 6.7 by the time τ at which the probability that the first phase slip

(q = 3 → 2) has occurred is 50%; this closely corresponds to the border between the

blue and white-shaded regions. This is done by binning the data in Pz and plotting the

occurrence of q = 3 states as a function of evolution time. To quantify the transition

between times when q = 3 superflow is likely, to later times when q = 3 superflow has

decayed, we fit this data to a sigmoid function

P(q = 3) =
1

1 + e
t−τ
σ

, (6.41)

where τ characterises the typical decay time, and σ the width of the transition in time.

The resultant τ are plotted as a function of Pz in figure 6.10 (a). The horizontal errors

are given by the standard deviation of Pz for a given bin, and the vertical errors are

given by the fitted uncertainty in τ . We see that τ rapidly increases for Pz & 0.64,

saturating at 100 seconds due to N decay. However, our observations of phase diffusion

and long-lived RF-dressed supercurrent suggested that the absolute spin polarisation

is the significant quantity, and not Pz. We therefore now combine our measurements

of τ , defining the characteristic onset of decay, with the transverse polarisation decay

function f(t) (figure 6.8 (b)), to calculate the characteristic total spin polarisation at

the onset of supercurrent decay:

P (τ) =
√
P 2
z + (1− P 2

z )f(τ). (6.42)

1We checked for t up to 100 seconds that we can always convert |y〉 into pure |↓〉 by sweeping δ far
from resonance.
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Figure 6.10: Critical spin polarisation Pc: (a) Characteristic time of the first phase slip, τ ,
versus Pz. Vertical blue line marks Pc, accurately determined in (b). (b) Modulus of the spin-
polarisation vector at the onset of the supercurrent decay, P (τ), versus Pz. Fit to the points
with P (τ) > Pz (horizontal solid blue line) gives Pc = 0.64(1). (c) Stability diagram on the

Bloch sphere. The blue-shaded region in figure 6.7 maps into the outer shell |~P | > Pc = 0.64.
(A cut through the sphere is drawn for clarity.)

P (τ) is plotted as a function of Pz in figure 6.10 (b). We can now clearly distinguish

two distinct regimes: one where P (τ) is constant within errors and one where P (τ) =

Pz. We thus complete our physical picture and accurately determine the critical spin

polarisation Pc. The two regimes thus correspond to:

1. If Pz > Pc, then |~P | can never drop below Pc. The supercurrent is fundamentally

stable and long-lived, τ � tcoh and therefore P (τ) = Pz.

2. If Pz < Pc, supercurrent decay starts at τ . tcoh, when the decaying P becomes

equal to Pc.

From all the data in the second regime we obtain Pc = 0.64(1). For 0 ≤ Pz ≤ Pc the

value of τ varies from 4 to 15 seconds and the orientation of ~P (τ) = (
√
P 2
c − P 2

z , 0, Pz)

in spin space varies from purely transverse to purely longitudinal, but the onset of the

supercurrent decay always occurs at the same |~P |. We thus conclude that the region

of supercurrent stability is in fact the outer shell of the Bloch sphere where |~P | > Pc,

as shown in figure 6.10 (c).
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Figure 6.11: Two component barrier model: (a) Schematic of one component creating a
density barrier which constricts the flow of the second component. The total density at all
points around the ring is constant, however the density of the majority component (indicated
in red) and that of the minority component (indicated in blue) can vary azimuthally. Here
we consider the worst-case scenario where one component forms a density peak of minimum
width W (ξs). (b) Calculated flow velocity of the majority component as a function of P for
the q = 3, 2, and 1 states at the peak density of the minority component for W = 6.5 µm.

The spin-rotational symmetry of our stability criteria arises intuitively from the near

equivalence of the inter and intra-component scattering lengths. As we saw in equation

(6.19), the small difference leads to symmetry breaking terms dependant on the value

of Sz, however these terms are ≈ 0.2% of the spin-independent term. We do observe

a very slight asymmetry between the stability of Pz > 0 and Pz < 0 supercurrents,

however we cannot reliably attribute this difference to the small spin-dependence of

the system. We also note from our data the existence of critical polarisations for the

q = 2 and q = 1 states at Pc(q = 2) ≈ 0.60 and Pc(q = 1) ≈ 0.55. Due to the fact

that we focused most of our data on studying the q = 3 → 2 transition, the errors on

these values are much larger. We also note once again that these states are themselves

formed from decay of the initial q = 3 state, and therefore are constrained to posses

lower values of Pc.

6.6 Two-state barrier model

We now present a simple model which provides a possible explanation for the critical

spin polarisation which we observe. Starting from a stable single-component superflow,

we consider the addition of a minority component. If the density of this minority

component is uniform around the ring, this has no effect on the flow velocity of either

component. Here we consider the worst-case scenario, where the density of the minority

component is strongly localised at one point in the ring, effectively acting as a barrier to

the flow of the majority component. The minimum width of the the minority component
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density profile, W (ξs), is dependent on the spin healing length, ξs. Since ξs gives the

length scale over which the value of the spin changes between its extremal values,

one would expect the minimum minority component width to be in the range ξs <

W (ξs) < 2ξs. For our system and starting atom number the spin healing length is

ξs ≈ 4 µm, and then increases as the atom number decays. With the constraint that

the total density is uniform around the ring, the presence of the minority component

creates a local reduction in the majority component density, and by the requirement

of particle flux conservation, this leads to an increased flow velocity of the majority

component, as shown in figure 6.11 (a). Our simple model is then to fix the width of

the minority component density bump at W (ξs), and calculate how the majority flow

velocity increases as we reduce the population imbalance.

For the purposes of providing a qualitative explanation, we assume a Gaussian

density distribution of the minority component of the form

n1 =
N1√
2πW 2

exp

(
−x2

2W 2

)
, (6.43)

where N1 is the atom number in component 1, x is the azimuthal direction, and we

have integrated out the vertical and radial directions, only considering variations in

spin polarisation in the azimuthal direction. By restraining the total density to be

uniform, the majority component density is simply given by

n2 = ntot − n1. (6.44)

We now apply the same criteria to calculate the flow velocity as we did in Section 5.4,

namely conservation of particle flux

n2v2 = constant = C, (6.45)

and quantised circulation ∮
v2.dl = 2πq

~
m
. (6.46)

The flow velocity is then given by

v2(x) =
L

N

C

1− N1
N

L
W

1√
2π

exp
(
−x2

2W 2

) , (6.47)

where the constant is given by

C = 2πq
~
m

N

L

/∫ L/2

−L/2
dx

[
1− N1

N

L

W

1√
2π

exp

(
−x2

2W 2

)]−1

(6.48)

We therefore see that the flow velocity is independent of the total atom number N , and

only depends on the ratio N1/N and W/L. In figure 6.11 (b), we plot the calculated flow

velocity of the majority component for W = 6.5 µm, for the rotation states q = 3, 2,
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and 1. This value of W is chosen to best match the critical spin polarisation which

we observe, and is consistent with our anticipated range of allowed W values. We

see that as the spin polarisation decreases from 1, the size of the barrier we can form

with the minority component increases, and hence the peak flow velocity increases. At

around P = 0.6, the density in the minority component is sufficient to fragment the

majority component and all flow stops. Comparing this to typical values of the local

sound velocity c ≈ 1mm/s, we see that such a healing length gives the correct value of

Pc(q = 3), and predicts the relatively close values of Pc for the q = 2 and q = 1 states.

Although quite a crude calculation, it does illustrate that the formation of out

of phase density fluctuations can lead to a non-trivial critical spin polarisation. The

fundamental questions left by this model are two fold. Firstly, we ask what drives

the formation of such spin structures? In spite of our two components being miscible

and eliminating any systematic differences in the potentials of the two-states, as shown

in Section 6.1.5, we do still observe the formation of spin structures. Modeling such

spin diffusion could also explain whether both components always decay together, or

whether above a certain population imbalance the minority component fragments and

stops rotating, while the majority persists. The second question is then what sets

the critical velocity? While one would assume the local sound velocity sets an upper

bound on vc, it may be possible that the coexistence of two components also facilitates

a different, lower critical velocity. This may be especially true since the local flow

velocity increase experienced by one component will correspond to a local flow velocity

decrease in the other component, and hence a large relative velocity between the two

components. As shown in [209–211], sufficiently high counterflow velocity between

two components can lead to excitations with imaginary frequencies and the onset of

dynamic instability.

6.7 Conclusion

In summary, we have observed persistent currents in multiply connected spinor con-

densates, demonstrated the existence of a critical spin polarisation for stable super-

flow, and elucidated the role of spin coherence in supercurrent stability. Empirically we

have shown that the supercurrents in both spin states are constrained to decay quasi-

simultaneously, and by establishing two-component superflow quantisation, we confirm

the decay mechanism is still 2π phase slips, as observed in the single condensate case.

By studying the stability of supercurrents as a function of the total spin polarisation P ,

we have identified and accurately measured the transition between two distinct regimes

with different decay mechanisms. For P > Pc the superflow is fundamentally stable

and decays in a manner identical to that of a pure single-component supercurrent. For

P < Pc the internal spin degree of freedom facilitates an additional decay mechanism

which causes the supercurrent to be fundamentally unstable.
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The existence of a critical population imbalance for superflow stability was pre-

dicted in [185–187], assuming equal intra and inter-component interactions and no

inter-component coherence. The supercurrent instability was associated with out-of-

phase density fluctuations in the two components. However, an agreement on the value

of Pc has not been reached. In references [185, 186] it was predicted that any q > 1

flow is unstable for essentially any P < 1, but according to [187] such current was

found to be stable above some nontrivial interaction-dependent Pc. The latter conclu-

sion qualitatively agrees with our observations, however none of the existing theories

is quantitatively applicable to our experiments, since they are limited to the simplified

cases of reduced dimensionality and very weak interactions.

The simple two-state barrier model we have presented provides at least a qualita-

tive description of how a non-trivial critical spin polarisation of the form observed can

arise. This model also highlights the need for further theoretical work to understand

the dynamics of phase decoherence and spin fluctuations in our system. In general

however, we cannot yet establish how the spin degree of freedom and the supercur-

rent decay mechanism are microscopically related. In one picture the spin degrees of

freedom evolve independent of the rotation, and once sufficient spin fluctuations have

formed the supercurrent decays in a manner similar to that explained by the two-state

barrier model. A second, more exciting, alternative exists, where the supercurrent de-

cay mechanism intrinsically uses the additional spin degree of freedom to unwind the

scalar phase associated with superflow. Such decay mechanisms could relate to dark-

bright solitons or magnons on a 1D Heisenberg chain. For these mechanisms, the global

value of the spin polarisation could permit sufficient freedom in the local spin vector

for accumulation of a Berry phase resulting in a phase slip.

Much of the interesting behaviour of our system then seems to arise from the near

equality of the scattering lengths involved. Within the single-mode-approximation, the

phase decoherence of a two-component system results from a spread in the distribution

of populations in the initial state which are converted into phase fluctuations by the

nonlinear interactions during the evolution. Therefore the rate of decoherence should

be proportional to the difference in scattering lengths as = (a11 +a00−2a10)/
√

2 [212].

Similarly the spin healing length also depends on the difference in scattering lengths,

and as a result our mixture exhibits long coherence times and large scale spin structures.

These two features respectively explain the lifetime of persistent currents of several sec-

onds for all values of Pz, and also, at least in the two-state barrier model, the significant

deviation of Pc from 1. An important next step would then be to study supercurrents in

a two-species system with significantly different intra and inter-component interactions

to confirm these conclusions.
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Chapter 7

Towards an azimuthal gauge potential

Ultracold atoms offer an appealing system for the study of many-body correlated states

relevant to condensed matter physics. One of the primary challenges however, is to

engineer a Hamiltonian for which neutral atoms behave as charged particles in a strong

magnetic field. Such a technique is required to realise exotic topological phases, such

as the fractional quantum hall effect (FQHE) in two-dimensional systems, which only

exists at high magnetic fields where the ratio of flux quanta to particles is of order

unity. The standard way to produce an artificial magnetic field is to rotate an atomic

cloud which produces a non-trivial vector potential in the rotating frame of reference

[29]. Such an approach however is limited to only modest fields, and as a result there

have been a wealth of proposals to create effective magnetic fields without rotation.

These can broadly be divided into two categories: asymmetric tunneling in optical

lattices [213–215], and geometric gauge potentials. We will be focusing on the second

approach, whereby atoms with two or more ground states are optically dressed, and

the position dependence of the dressed internal states leads to geometric vector and

scalar potentials [216].

The field of geometric gauge potentials has been driven forward primarily by the

experiments of Spielman et al [66, 217–220]. By dressing the F = 1 magnetic sublevels

of a BEC with two counterpropagating Raman laser beams they were able to couple the

internal spin states with linear momentum differing by twice the photon momentum.

This gives rise to a spatial gradient of the phase difference between spin components

of the dressed state, achieving the first light-induced vector gauge potential [66]. By

subsequently varying this gauge potential both spatially, and temporally, they were

able to synthesise both artificial magnetic [218] and electric [219] fields respectively.

By engineering a dressed band with two minima, they have also managed to realise an

ultracold atom analogue of spin-orbit coupling [220].

In this chapter we discuss our progress in realising an azimuthal gauge potential,

where the internal spin components of the dressed state are coupled to the angular

momentum. We start by reviewing the theory behind linear gauge potentials, and

then show how our setup is a simple mapping from linear to azimuthal motion. Our

azimuthal gauge setup exhibits additional exciting possibilities which arise due to the
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7.1 Linear gauge potentials

Figure 7.1: Linear gauge potential: (a) The BEC is dressed by two counterpropagating Raman
beams with frequencies ω and ω + ∆ω, linearly polarised along orthogonal axes. The Raman
beams couple the mF magnetic sublevels of the F = 1 manifold, which is split in an external
magnetic field B. (b) Population of the three mF spin states in the lowest dressed band as a
function of Raman detuning, δ, for ~Ω = 5Er and kx=kmin. (c) Position of the band minimum
kmin in momentum space as a function of Raman detuning for ~Ω = 5Er. The insets show the
energy of the dressed bands (blue) as a function of kx for the cases of positive and negative
detuning. The dashed black lines indicate the original bare states. The red dot indicates
the minimum of the lowest dressed state, which due to the confining potential, the BEC will
adiabatically follow.

translational symmetry afforded to us by our ring geometry. To illustrate this, we then

describe a proposed superfluid fraction measurement, where the spin-orbit coupling

allows us to relate the rotational state of the system to the spin populations. The

final section presents the experimental progress made so far, as well as the technical

challenges which remain.

7.1 Linear gauge potentials

In this section we briefly explain the linear gauge setup realised by Spielman et al. and

detailed in [66, 217]. We start by dressing a BEC in the F = 1 ground state with two
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7.1 Linear gauge potentials

Raman beams of frequency difference ∆ω, counterpropagating along x̂, as shown in

figure 7.1 (a). These beams couple states |mF , kx〉 differing in their internal state by

∆mF = ±1 and differing in linear momentum ~kx by 2~kr, where ~kr = h/λ is the

single-photon recoil momentum. We also define Er = ~2k2
r/2m as the associated recoil

energy. The spin and momentum states |mF , kx〉 coupled by the Raman beams are

grouped into families of states labeled by the momentum ~kx:

Ψ(kx) = {|−1, kx + 2kr〉 , |0, kx〉 , |+1, kx − 2kr〉}. (7.1)

In the rotating wave approximation for the frame rotating at ∆ω, the Hamiltonian

expressed in the state basis of the family Ψ(kx) is given by

H = ~


~

2m(kx + 2kr)
2 − δ Ω/2 0

Ω/2 ~
2m(kx)2 − ε Ω/2

0 Ω/2 ~
2m(kx − 2kr)

2 + δ

 . (7.2)

Here δ = gFµBB~ is the detuning from Raman resonance, Ω is the resonant Raman

Rabi frequency, and ε accounts for the quadratic Zeeman shift. For each kx, diago-

nalising H gives three eigenvalues Ej(kx)(j = 1, 2, 3). For dressed atoms in state j,

this eigenenergy as a function of kx is the effective dispersion relation, and depends

on the experimental parameters, δ, Ω, and ε, as shown in the insets of figure 7.1 (c).

Concentrating on the lowest energy dressed band, the number of energy minima and

their positions kmin are thus experimentally tuneable. Around the band minimum kmin,

the dispersion relation can be expanded as

E(kx) ≈ ~2

2m∗
(kx − kmin)2, (7.3)

where m∗ is the effective mass. Considering the Hamiltonian for a particle of charge q

in a magnetic vector potential A

H =
(p− qA)2

2m
, (7.4)

we can then identify kmin with the light-induced vector gauge potential

qA = ~kminx̂. (7.5)

In figure 7.1 (c) we calculate the value of kmin, and therefore the effective magnetic

vector potential qA/~, for the lowest dressed band as a function of the Raman detuning

δ.
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7.2 Azimuthal gauge potential

The mechanical momentum is defined as

pmech = mẋ = m
∂H

∂pcan
(7.6)

=
m

~
∂H

∂kx
, (7.7)

where pcan is the canonical momentum. We therefore identify the mechanical motion

of the dressed state as the gradient of the energy band with respect to kx. In [66] the

condensate was adiabatically loaded into the minimum of the lowest dressed band for

zero Raman detuning, δ = 0, corresponding to the band minimum at kmin = 0. From

the populations of the mF states plotted in figure 7.1 (b) as a function of δ, we see

this dressed state corresponds to a superposition of all three mF states. From equation

(7.7), for such a state at the band minimum, the mechanical momentum is zero and

the dressed atoms are stationary in the lab frame. The momenta of the individual spin

components however are nonzero. To see this, one can project the dressed state onto

its original spin and momentum components (shown by the dashed black lines in figure

7.1 (c)) by abruptly removing the Raman coupling. One then decomposes the dressed

state into the mF = 1, mF = 0, and mF = −1 states with mechanical momenta −2~kr,
0, and 2~kr respectively.

If one first adiabatically sweeps the Raman detuning to ~δ = −2Er (Inset of figure

7.1 (c)), the minimum of the energy band is shifted to a non-zero kmin, corresponding to

application of a vector gauge potential in the x̂ direction. Due to the trapping potential

the dressed state of the atoms are confined to follow the minimum of the band, and

hence the mechanical momentum of the dresses state is restricted to be zero in the lab

frame. From figure 7.1 (b), we see that the spin composition of the dressed state has

changed to predominantly the mF = 1 state. The presence of a non-zero kmin is then

confirmed by projecting into the bare states, where one then observes the appropriate

decomposition of the mF = 1, mF = 0, and mF = −1 states, but now with respective

mechanical momenta −2~kr + ~kmin, 0 + ~kmin, and 2~kr + ~kmin.

These experiments showed that one can utilise light fields to create vector gauge

potentials for neutral atoms, which can be easily manipulated by varying the detuning of

the Raman coupling. This basic setup was then extended by the addition of a magnetic

field gradient to create a spatially varying A(r), and therefore an effective magnetic

field B = ∇×A(r) [218]. Varying the value of the detuning and therefore A(t) in time

they also created an ultracold atom analogue of an electric field E = −∂A(t)/∂t [219].

7.2 Azimuthal gauge potential

In this section we detail our experimental setup, which though similar in spirit, instead

couples the internal spin state to angular, rather than linear, momentum. We start

by considering a BEC held in a ring trap formed by a red-detuned LG beam, which
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Figure 7.2: Azimuthal gauge potential: (a) The ring BEC is dressed by two copropagating
Raman beams with frequencies ω and ω + ∆ω, linearly polarised along orthogonal axes. The
Raman beams couple the mF magnetic sublevels of the F = 1 manifold, which is split in an
external magnetic field B. One of the Raman beams is a broad Gaussian beam, while the
second is an LG beam of phase winding ∆`. (b) Population of the three mF spin states in
the lowest dressed band as a function of Raman detuning, δ, for ~Ω = 5Erot and `=`∗. (c)
Position of the band minimum `∗ in angular momentum space as a function of Raman detuning
for ~Ω = 5Erot. The insets show the energy of the dressed bands (blue) as a function of ` for
the cases of positive and negative detuning. The dashed black lines indicate the original bare
states. The red dot indicates the minimum of the lowest dressed state.

also acts as one of the Raman beams. To generate an azimuthal vector potential, we

Raman-couple the mF magnetic states of the F = 1 ground state using the LG beam

and secondary Gaussian beam, co-propagating in the vertical direction ẑ, perpendicular

to the toroidal trap. In this sense, our setup is identical to the one we introduced in

Chapter 4 to create persistent currents. The only distinction is that now rather than

using the Raman transition to Rabi flop to a state with different angular momentum,

we will continuously couple the magnetic states to create new dressed states. Our

experimental setup is illustrated in figure 7.2 (a).

Our Raman transition couples states |mF , `〉 differing in their internal state by

∆mF = ±1 and differing in angular momentum ~` by ~∆`, where ~∆` is the angular
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momentum carried by the LG beam. The relevant energy is now the rotational energy

Erot = ~2(∆`)2/2mR2, where R is the radius of the ring trap. The family of coupled

states is now given by:

Ψ(`) = {|−1, `+ ∆`〉 , |0, `〉 , |+1, `−∆`〉}. (7.8)

In the rotating wave approximation for the frame rotating at ∆ω, the Hamiltonian

expressed in the state basis of the family Ψ(`) is given by

H = ~


~

2mR2 (`+ ∆`)2 − δ Ω/2 0

Ω/2 ~
2mR2 (`)2 − ε Ω/2

0 Ω/2 ~
2mR2 (`−∆`)2 + δ

 . (7.9)

This Hamiltonian is identical to that for the linear momentum case in (7.2) with the

following mapping

~2

2m
→ ~2

2mR2
; kx → `; 2kr → ∆`. (7.10)

Once again we diagonalise H to obtain the dressed state energy bands, which we

expand about the minimum as

E(`) ≈ ~2

2m∗R2
(`− `∗)2. (7.11)

This is equivalent to the Hamiltonian

H =
(pθ − qAθ)

2

2m
, (7.12)

where we have identified the azimuthal momentum and azimuthal vector potential as

pθ =
~`
R
θ̂; qAθ =

~`∗

R
θ̂. (7.13)

As shown in figure 7.2 (c), the position of the band minimum can be varied in the

range −∆` → ∆` by changing the Raman detuning δ, which also changes the spin

composition of the dressed state as shown in figure 7.2 (b).

We note that unlike for the linear gauge case, the fact that our vector potential is

in the azimuthal direction means it automatically corresponds to a non-zero magnetic

flux threading the ring. If we shift the band minimum to `∗ 6= 0, we create an azimuthal

vector potential, equal in magnitude at all points on the ring. Using Stoke’s theorem

we see this corresponds to a flux, Φ, threading the ring

Φ =

∫ ∫
B · dS =

∮
A · dl =

2π~`∗

q
. (7.14)
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The form of the effective magnetic field is then given by

B = ∇×A =
1

R

∂RAθ
∂R

ẑ (7.15)

=
1

R

∂

∂R

(
~`∗

q

)
ẑ. (7.16)

This is in general a nontrivial function, since `∗ depends on Ω which varies with the

intensity of the Raman beams. To first order though ∂`∗/∂R = 0 at the atoms since

the maximum Ω also defines the trap minimum, and hence the magnetic field can

be considered zero at the atoms. The angular momentum acquired by the dressed

state, ~`∗, can therefore be viewed as an Aharanov-Bohm type effect. Alternately one

can also explain it as a cold atom analogue of Faraday induction, where the angular

momentum acquired as we vary the effective magnetic field is equivalent to generating

an electrical current in a coil as the magnetic flux enclosed is varied in time. We

now further explain the properties of this system by describing a proposed experiment

to measure the superfluid fraction of an atomic gas which makes explicit use of the

azimuthal nature of our created vector gauge potential.

7.2.1 Superfluid fraction measurement

As discussed in Section 2.4.2, while the concepts of superfluidity and BEC are intrinsi-

cally linked, the superfluid fraction and condensed fraction of a gas or fluid in general

take very different values. While the condensed fraction can be measured by mapping

the momentum distribution to real space in time-of-flight expansion, a quantitative

measure of the superfluid fraction is harder to achieve. Such a measurement however

is important for investigating the properties of interacting Bose gases. Specific cases

of interest include strong interactions which can lead to condensate depletion without

loss of superfluid fraction, and the Kosterlitz-Thouless phase transition in a quasi-2D

geometry which manifests itself in a universal jump in the superfluid density [221, 222].

Recently the first measure of superfluid fraction in a quantum gas was realised in a de-

generate Fermi system by measuring the speed of second sound [223]. Here we present

an alternate approach using our azimuthal gauge potential, which was first proposed

in [104].

The basic principle of the experiment is shown in figure 7.3. Starting for example

in the pure mF = −1 state, one can load into the lowest dressed band by adiabatically

turning on the second Gaussian Raman beam with the detuning δ � 0. As shown

in the left panel of figure 7.3 (a), this loads both normal and superfluid components

into the band minimum at `∗ = 0. Since the gradient of the dispersion relation is zero

at the minimum, pmech = 0, both components are at rest in the lab frame. By then

sweeping the Raman detuning towards zero, we shift the band minimum and impose

our azimuthal vector potential (right panel figure 7.3 (a)). Due to interactions with the

trapping potential, the normal component is constrained to follow the band minimum
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Figure 7.3: Superfluid fraction measurement: (a) Starting with the Raman coupling far
detuned, |δ| � Ω, we adiabatically load the pure mF = −1 state into the minimum of the
lowest dressed band by ramping on the Gaussian beam. Both normal component (green circle)
and superfluid component (red star) are then at the band minimum ` = `∗ = 0. By sweeping
the detuning towards resonance, the band minimum shifts and the spin composition changes.
The normal component interacts with the walls of the trap and relaxes, following the band
minimum such that pmech = 0 and ` = `∗. The superfluid component cannot relax and remains
at the original ` = 0, and therefore starts to rotate in the lab frame. (b) As well as a difference
in mechanical momentum between the two components, the spin composition of the dressed
state at ` = `∗ differs slightly from that at ` = 0, which allows one to perform a spectroscopic
superfluid fraction measurement. Plotted is this difference as a function of the final detuning.

where it is stationary with respect to the lab frame. In contrast the superfluid compo-

nent is unable to relax and follow the band minimum, remaining at the original angular

momentum ` = 0. The gradient of the dispersion relation at this point increases as the

detuning is changed, causing the superfluid component to rotate in the lab frame with

pmech 6= 0. This distinction provides the definition of the superfluid fraction [13]. This

behaviour in a toroidal trap with an azimuthal vector potential is in marked contrast to

the case of a linear vector potential, where, due to the lack of translational invariance

along the direction of the vector potential, both components must relax and follow the

band minimum.

A key element of this proposal is that one can measure this distinction between

normal and superfluid behaviour using spectroscopic methods. The wavefunction of

the lowest band is a linear superposition of the three magnetic levels, with amplitudes
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which vary with `. For a given detuning, the spin composition of a normal state at

the band minimum ` = `∗, differs slightly from the spin composition of a superfluid

state which remains at ` = 0. One can quantify this by the difference in the number of

particles in the mF = ±1 states

∆p(`) =
N−1 −N1

N
. (7.17)

In figure 7.3 (b) we plot the difference in ∆p between the normal component (` = `∗)

and the superfluid component (` = 0). Initially the population imbalance is identical

for both the purely normal and purely superfluid states, however for final detunings

close to zero, the distinction between ∆p peaks at a few percent, before tending to-

wards zero again at δfinal � 0. This difference in population imbalances forms the

basis of the proposed measurement. Sweeping the detuning to δfinal = 0.2Ω where the

signal peaks, if our gas was purely normal we would measure a population imbalance

∆p(`∗). Alternately if our gas was purely superfluid we would measure a different pop-

ulation imbalance ∆p(0), differing from ∆p(`∗) by a few percent. If our gas had both

components, one could therefore calculation the superfluid fraction as

ρs
ρ

=
∆p(`∗)−∆p

∆p(`∗)−∆p(0)
, (7.18)

where ∆p is the measured imbalance, while ∆p(0) and ∆p(`∗) are calculated using the

known values of Ω, δfinal, and ε.

This proposed experiment illustrates how one can make use of an azimuthal vector

potential to directly link superfluid motion and spin composition. While in principle

we have the experimental setup required to perform this experiment, a key step is to

prove that the Raman coupling is coherent and that the atoms remain in the lowest

dressed state only. Incoherent processes can lead to population of higher bands which

will alter the measured spin composition, destroying the few percent signal we need to

observe. In the next section we detail the progress we have made so far in implementing

such an azimuthal vector potential, and also some of the technical issues which remain.

7.3 Experimental progress

The current status of our experimental progress is illustrated by figure 7.4. By coupling

the F = 1 manifold with our ` = 3 LG and Gaussian Raman setup, we have managed to

engineer the azimuthal vector potential proposed above. Through varying the detuning

of the Raman coupling we can demonstrate the changing mechanical rotation and spin

composition of the superfluid state as the band minimum is shifted. We can also force

the superfluid state to relax to the band minimum by ramping up a repulsive green

laser beam overlapped with the toroidal trap to create a barrier to the superflow. Us-

ing these tools we now demonstrate six distinct dressed states. The appropriate band
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Figure 7.4: Far-detuned azimuthal vector potential: (a) Relevant dressed state dispersion
relations E(`). The angular momentum ` is indicated for the superfluid component by the red
star, and for the normal component by the green circle. As we work with a pure condensate
we only ever observe behaviour consistent with a pure superfluid. (b) Absorption images of
the dressed state projected onto the original basis states at 29 ms TOF in the presence of a
Stern-Gerlach field which splits the different mF states along the vertical direction. The q state
of each image is measured kinematically by fitting the size of the central density hole formed
in TOF. The protocol to prepare each measurement (i)→(vi) is explained in the text.

structure for these states is shown in figure 7.4 (a), and the projection of the dressed

state onto the original basis |mF , `〉 is shown in figure 7.4 (b).

In this experiment we prepare the dressed state in an external field of 10 G, where

the second order Zeeman shift ε ≈7 kHz, and use a modest Rabi frequency of only

Ω ≈ 500 Hz. As a result our Raman beams do not simultaneously couple all three

mF states, and therefore for a window of detuning near zero, the spin composition of

the dressed state is purely mF = 0. The reasoning behind limiting ourselves to this

simplified case will be explained in the following section.

We now describe the six experimental sequences, relating to the appropriately la-

beled band diagrams and absorption images in figure 7.4. In all cases the dressed state
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is projected into the |mF , `〉 basis just before TOF by abruptly jumping the Raman

detuning far from resonance. The spin composition of the dressed state is measured by

separating the mF states during TOF by application of a Stern-Gerlach gradient. The

angular momentum ` of the dressed state is measured by fitting the size of the density

hole formed in TOF, as explained in Section 4.4.2.

( i ) Starting in the pure mF = 1 state, the Raman coupling is ramped up with δ far

above resonance: This loads the condensate into the lowest dressed band with spin

composition Ψ(` = −3) = {|mF = 1, `+ 3〉 , |mF = 0, `〉 , |mF = −1, `− 3〉} =

{1, 0, 0} and band minimum `∗ = −3. This is confirmed by observing only the

non-rotating |mF = 1, ` = 0〉 state in TOF.

( ii ) Sweeping the detuning to below the mF = 1→ mF = 0 resonance: This shifts the

band minimum to `∗ → 3, however our superfluid remains at ` = −3 and therefore

we prepare the dressed state with spin composition Ψ(` = −3) = {0, 1, 0}. This

is confirmed by observing only the |mF = 0, ` = −3〉 state in TOF.

(iii) Sweeping the detuning far below both the mF = 1 → mF = 0 and mF = 0 →
mF = −1 resonances: Our superfluid remains at ` = −3 and we prepare the

dressed state with spin composition Ψ(` = −3) = {0, 0, 1}. This is confirmed by

observing only the |mF = −1, ` = −6〉 state in TOF.

(iv) Preparing state (iii), we then kill rotation by ramping up and down the repulsive

barrier beam over 500 ms: The superfluid velocity exceeds critical velocity at the

barrier and relaxes to the band minimum at `∗ = 3. The relaxed dressed state

then has spin composition Ψ(` = 3) = {0, 0, 1}. This is confirmed by observing

only the non-rotating |mF = −1, ` = 0〉 state in TOF.

( v ) Preparing state (iv), we then then sweep the detuning above the mF = 0 →
mF = −1 resonance: This shifts the band minimum back to `∗ → −3, but our

superfluid which has relaxed to ` = 3 by application of the barrier, does not follow.

We therefore prepare the dressed state with spin composition Ψ(` = 3) = {0, 1, 0}.
This is confirmed by observing only the |mF = 0, ` = 3〉 state in TOF.

(vi) Preparing state (iv), we then sweep the detuning far above both the mF = 0 →
mF = −1 and mF = 1 → mF = 0 resonances: Our superfluid remains at ` = 3

and we prepare the dressed state with spin composition Ψ(` = 3) = {1, 0, 0}.
This is confirmed by observing only the |mF = 1, ` = 6〉 state in TOF.

In principle then, we have demonstrated a tuneable light-induced azimuthal vector

potential. The next important step would then be to prepare a dressed state with non-

trivial occupation of more than one mF state. Unfortunately our research so far has

highlighted several technical difficulties which prevent us from further manipulating

and quantifying dressed states composed of multiple spin states.
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7.3.1 Technical challenges

In the hope of guiding future work on this project, we now outline some of the technical

problems observed in our setup which remain unsolved:

1. Dressed states prepared near resonance, which therefore are composed of more

than one spin state, are observed to decohere on timescales of ≈100 ms. This is

confirmed by preparing and holding such a state, and then sweeping the Raman

detuning far below resonance. We observe occupation of more than one mF state,

corresponding to population of higher dressed states. The rotational state of the

mF = −1 component is also found to decrease the longer we hold near resonance.

2. To detect the rotational state we need to accurately measure the size of the

density hole formed in TOF due to the presence of a centrifugal barrier. This

technique requires us to first ramp down the ring trap over ≈ 100 ms before

release, for the hole to expand sufficiently over the 29 ms TOF (See Section 4.4.2).

We find that for spin mixtures prepared by projecting the Raman dressed state,

complex dynamics occur over this timescale which prevent us from measuring the

rotational state of each spin component upon projection. The reason why this is

in such stark contrast to the mixtures prepared by RF coupling in Chapter 6 is

not clear.

3. To deterministically kill rotation and force the dressed state to relax, the repulsive

potential barrier must be raised and lowered very slowly so as not to induce an

unknown quantity of circulation through mechanical stirring. While we have been

able to readily achieve this in the limit of large detuning, due to the decohering

processes we find near resonance, the time to do so is not available for dressed

states with non-trivial spin composition.

4. Finally, we also note that our Raman beams exert a significant dipole potential

on the atoms, and therefore the high intensities required to generate large Rabi

frequencies will alter the ring potential. Due to the requirement that our ring po-

tential remains sufficiently smooth, circularly symmetric, and multiply-connected

for superflow to persist, the maximum Rabi frequency we can achieve is limited.

This problem can be solved by changing the Raman wavelength to nearer 790 nm

where the dipole potential is smaller, but at the cost of increased light scattering.

7.4 Conclusion

In conclusion, by Raman coupling different mF states with different angular momenta,

we have managed to generate an azimuthal vector potential. Through varying the

detuning of the Raman beams we have demonstrated control of this vector potential,

and therefore the magnetic flux which threads the ring. Due to the toroidal geometry
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of our system, we have shown that in contrast to the case of a linear vector potential,

we can prepare both dressed states which conserve angular momentum by rotating

in the lab frame, and those which relax to the minimum of the dispersion relation

and are stationary. Technical challenges still need to be addressed however, including

maintaining coherence near resonance, deterministically forcing the dressed state to

relax, and measuring the rotation of multi-component states.
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Chapter 8

Summary and outlook

It is my hope that the work in this thesis has both demonstrated, and in some part

furthered our understanding of, the intricate physics at play in persistent currents. In

many regards the study of metastable superfluid flows and their decay feels quite tradi-

tional, building on a century of experimental and theoretical research. As we discovered

while researching the mechanisms at play in our toroidal condensate superfluid, many

of the questions which we have tried to address in this work have been posed decades

before in the context of either superfluid helium or superconducting nanowire experi-

ments. The hope then is that while the physics may be universal and long-standing,

the realisation of persistent currents in dilute atomic condensates, presented both in

this work and that of NIST, will offer a unique alternate route to further probe these

phenomena.

The key achievements of our work can be summarised as follows:

� We have created a long-lived multiply-charged persistent current in a toroidal-

shaped BEC. By using an SLM to generate our LG beam, we are able to im-

print a well-defined and variable phase winding onto the condensate wavefunc-

tion, preparing a state of known angular momentum. The SLM also allows us

to correct for abberations in our system, enabling us to achieve a ring trap with

azimuthal variations of less than 10%. With this setup we have demonstrated

supercurrents persisting for two minutes, limited only by the gradual decay of

atom number.

� For the first time we have demonstrated that the angular momentum state of

the persistent current decays in a quantised fashion, corresponding to collective

jumps of the atoms between metastable minima. This unambiguously confirms

the decay mechanism as vortex-induced 2π phase slips.

� Our ability to resolve individual phase slips also opens the possibility to study

the dynamics of phase slips. We find that the supercurrent decays rapidly if

the superflow speed exceeds a critical velocity in good agreement with numerical

simulations, and we also observe rare stochastic phase slips for superflow speeds
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below the critical velocity. From this, we attribute the onset of decay to the

excitation of phonon modes when the superflow velocity exceeds the local sound

velocity, in agreement with numerical solutions of the GPE.

� We study persistent currents in a toroidal two-component Bose gas for the first

time. In contrast to many theoretical predictions, we find that the supercur-

rent is stable for spin polarisations above a well defined, and non-trivial, critical

value. Below this value we find the supercurrent is unstable, and decays due

to the presence of the second component. We also investigate the role of phase

coherence between the two spin states and show that only the magnitude of the

spin-polarisation vector, rather than its orientation in spin space, is relevant for

supercurrent stability.

8.1 Outlook

The outlook for future work on this system falls into two categories. The first of these

are experiments which further the understanding of our observations so far. One of

the main question posed by our observations of stochastic phase slips is the role of

temperature in the stability of persistent currents. By studying supercurrent decay as

a function of temperature it might be possible to understand how the energy barrier

to decay changes as a function of atom number. One could also extrapolate the data

down to T = 0, possibly allowing further confirmation of the zero temperature GPE

result, or perhaps one might find evidence of quantum tunneling, as was observed in

superfluid helium and superconducting nanowire systems. Studying how the critical

velocity changes, if at all, as the dimensionality of the system changes, could also offer

further insight into the connection between superfluidity and BEC.

Persistent currents in multi-component condensates offer a wealth of complex physics,

and here the challenge is more in trying to restrict oneself to a limited subset of the

possible mechanisms at play. Even in the absence of superflow, the evolution of a

two-component condensate with periodic boundary conditions is an interesting and

challenging problem. One of the main conclusions of our studies was the significance

of the inter and intra-species scattering lengths. For the two components we used, the

fact that they were almost equal, lead to a spin-symmetric stability criteria and long

timescale decoherence and spin dynamics. Clearly it would be beneficial to put our

results in context, by studying either a two-component condensate with significantly

different scattering lengths, or even a dynamically unstable mixture. This could perhaps

also further our understanding of the mechanisms which give rise to spin structures,

and whether these out of phase density fluctuations do indeed play a significant role

in disrupting the supercurrent stability, as predicted by our simple two-state barrier

model.

The second category of future experiments are those which use our setup to branch
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out into new areas of physics. As we discussed in Chapter 7, one of the most exciting

possibilities is the opportunity to generate an azimuthal vector potential, not least as

a means of measuring the superfluid fraction. While we have been able to demonstrate

some preliminary results, the truly interesting physics comes about once the dressed

state has a non-trivial spin composition. In such a situation one can demonstrate

the coupling between spin-composition and angular momentum, and even counter-

intuitively induce rotation in one spin-state by forcing the atoms to relax in the dressed

band. Several mappings have been proposed for the response of this system, including

interpretations as Faraday induction, an Aharanov-Bohm type effect, and the Einstein-

de Haas effect. While several technical challenges currently bar our progress, this

system is certainly interesting enough to merit further persistence.

An alternate direction we have considered, is to use our ring trap to study the

Kibble-Zurek mechanism [103]. The principle of this measurement is that in a second-

order phase transition, the relaxation time of the system diverges near the critical point,

and hence every such transition traversed at a finite rate is a non-equilibrium process.

If one considers Bose-Einstein condensation in a ring trap, then the phase of the macro-

scopic wavefunction is first established locally, with a domain size dependent on the

rate at which one quenches through the transition. As the condensate then comes into

equilibrium, these regions merge and can potentially create topological defects forming

quantised vortices. Such a mechanism has been observed in [224]. If one performs this

quench in a ring trap, it is possible to test the predicted scaling laws of the Kibble-Zurek

mechanism, by measuring the distribution of supercurrent states formed as a function

of quench rate.

Finally, we also note that our ring trap also forms an ideal system for fundamental

studies in a periodic potential. One such study, which would also further illuminate

our results on multi-component persistent currents, would be to study spin diffusion

on a 1D periodic lattice. By reducing the radial extent of our trap to below the spin

healing length, we can effectively create a 1D chain of spin domains. Such a system

would then be analogous to a Heisenberg spin chain, allowing us to study the system’s

response to both rotations of the global spin, and the propagation of local spin defects.

Such a setup could then also be used to study both single and two-component solitons

in a periodic potential. Many of these proposed experiments can also be done with
39K, where the additional freedom to precisely tune the scattering length over a wide

range opens up a wealth of further possibilities.
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Appendix A

Analytic form of pseudo-LG beam

To compare our pseudo-LG beam to the true LG field we now derive an analytic

expression for the field at the focus. As illustrated in figure A.1, we define the field at

the SLM as f0(x0, y0), the field directly before the lens as fz(x1, y1) after propagating

a distance z, and the field at the focus as gf (x2, y2). Using the rules defined in Section

4.2.4, we identify these fields as

f0(x0, y0) = E0 exp

(
− r

2
0

w2

)
exp (−`θ0) (A.1)

fz(x1, y1) =
1

iλz

∫ ∫
f0(x0, y0) exp

[
ik

2z
((x1 − x0)2 + (y1 − y0)2)

]
dx0dy0 (A.2)

gf (x2, y2) =
1

iλf

∫ ∫
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]
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exp
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]
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, (A.3)

where

F0

(
x2

fλ
,
y2

fλ

)
=

∫ ∫
f0(x0, y0) exp

(
2πi

fλ
(x0x2 + y0y2)

)
dx0dy0

= E0

∫ ∫
exp

(
− r

2
0

w2

)
exp(i`θ0)

× exp

(
2iπr0r2

fλ
cos(θ0 − θ2)

)
r0dr0dθ0

Using the identity

Jn(z) =
1

2πin

∫ 2π

0
exp(iz cos θ) exp(inθ)dθ, (A.4)
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A Analytic form of pseudo-LG beam

Figure A.1: Schematic of field propagation within LG setup: The field at the SLM, f0(x0, y0),
is composed of the incoming Gaussian intensity profile with the phase of the SLM imprinted.
For this calculation we only consider the effect of the azimuthal phase winding. The field after
freely propagating a distance z is defined as fz(x1, y1). The action of the lens is to impart a
spatially varying phase delay, φL, defined in (4.10). The field of interest is that at the focal
point, gf (x2, y2).

where Jn(z) is the Bessel function of the first kind. One then finds

gf (x2, y2) = E0
2πi`−1

λ

f

z2
exp

[
iπ

fλ

f − z
f

r2
2

]
exp(i`θ2)

×
∫
r0 exp

(
− r

2
0

w2

)
J`

(
2πr0r2

fλ

)
dr0. (A.5)

We have now extracted the azimuthal phase winding, showing that the field at the

focus carries angular momentum. The radial function can be slightly simplified using

the identities [225]∫ ∞
0

Jn(bz) exp(−p2z2)dz =

√
π

2p
exp

(
b2

8p2

)
In/2

(
b2

8p2

)
, (A.6)

where In(z) is a modified Bessel function of the first kind, and

dJn(z)

dz
=
Jn−1(z)− Jn+1(z)

2
. (A.7)

Integrating the radial function by parts we obtain the final expression

gf (x2, y2) = E0i
`−1√πf

2

z2

w

w0

r2

w0
exp
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− r2

2

2w2
0
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2
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2
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− I `+1
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2w2
0

)]
× exp

[
iπ

fλ
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f

r2
2

]
exp(i`θ2), (A.8)

where we define the diffraction limit w0 = fλ/πw. We note that unlike the numeri-

cal calculations presented in Section 4.2.4, this result does not account for the finite

apertures of the SLM and the imaging lens which are found to reduce radial oscillations.
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Appendix B

Numerical calculation of ring BEC

excitation spectrum

To consider the relevance of the various analytic models of critical velocity considered

in Section 5.5, we independently calculate the Bogoliubov excitation spectrum for a

nonrotating, two dimensional Bose gas confined in a ring potential. This calculation is

presented in [181], but here we present further details of our implementation. Repeating

this calculation was necessary to extend the results down to low atom numbers, relevant

to our experimental conditions where we observe phase slips. In doing so, we find the

conclusion of [181], that the spectrum is well approximated by the surface mode model

of [180], is only valid above a critical chemical potential, µc. Below µc we find that the

critical velocity for sound excitations becomes the lowest, and hence relevant, critical

velocity. This is accompanied by a change in the nature of the excitations from surface

instabilities, to phonon modes.

The condensate is described by the 2D GPE

i∂tΦ =

(
−∆

2
+

1

2
(r − r0)2 + g|Φ|2

)
Φ, (B.1)

where we use the associated scale for energy (~ωr), time (ω−1
r ), and length ar =√

~/(mωr). The condensate wavefunction, Φ = Φ(r, θ, t), is normalised to unity,

∆ = ∂2
r + ∂r/r + ∂2

θ/r
2 is the Laplacian in polar coordinates, r0 = rM/ar is the

dimensionless ring radius, and g = N
√

8π a
az

is the dimensionless 2D interaction con-

stant, where N is the atom number, a is the s-wave scattering length, and az is the

harmonic oscillator length in the z direction [182].

The initial ground state of the system is found by propagation in imaginary time.

If we consider the wavefunction as a superposition of eigenstates φm(r) with time-

dependent amplitudes am(t) and eigenenergies Em(t), by making the substitution ∆t→
−i∆t, the time evolution operator leads to an exponential decay of the wavefunction,

and a corresponding decay of the eignestates via

Φ(r, t+ ∆t) =
∑
m

am(t)φm(r) exp(−Em∆t). (B.2)
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B Numerical calculation of ring BEC excitation spectrum

Figure B.1: Convergence of ground state
calculation: Plotted is the fractional change
in the calculated chemical potential and a
function of iteration number. The relative
change in µ exponentially decays with itera-
tion number, and the calculation stops when
the desired accuracy of 10−12 is obtained.
Inset is an example plot of the calculated
ground state density.

Crucially, the eigenenergy governs the decay rate, and so the eigenstate with the lowest

energy decays slowest. From some trial wavefunction and by renormalisation of the

wavefunction during the imaginary time propagation, the wavefunction will tend to-

wards the ground state of the system.

We perform this calculation on a mesh grid in both real space and Fourier space.

We split the evolution into two steps, the first acts on the real space wavefunction

with the real space energy terms associated with the external trapping potential and

mean field interactions. The second step Fourier transforms the wavefunction to the

momentum space and acts upon it with the momentum term. Fourier transforming

back to real space and renormalising, we obtain the wavefunction propagated in imag-

inary time. For sufficiently small time steps the wavefunction will then converge to

the ground state. The corresponding Matlab code for this calculation is presented in

CalculateGroundState.m. An example of the obtained convergence to the ground state

is presented in figure B.1.

To find the excitation spectrum we use the rotational invariance of B.1, and con-

sider perturbations of the form

Φ(r, θ, t) = e−iµt[Φ(r) + δΦm(r, θ, t)], (B.3)

where

δΦm(r, θ, t) = um(r)e−i(ωt−mθ) + vm(r)∗ei(ω
∗t−mθ). (B.4)

Φ denotes the stationary ground state of the system, µ is the global chemical potential,

and δΦ is a small perturbation parameterised by the angular wavenumber m. Insertion

of this trial solution into the GPE we obtain the Bogoliubov-de Gennes equations to

first order in δΦ:

ωu(r) =

(
−∂2

r −
1

r
∂r +

m2

r2
+

1

2
(r − r0)2 + 2g|Φ|2 − µ

)
u(r) + gΦ2v(r), (B.5)

ωv(r) =

(
∂2
r +

1

r
∂r −

m2

r2
− 1

2
(r − r0)2 − 2g|Φ|2 + µ

)
u(r)− gΦ∗2u(r). (B.6)
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Figure B.2: Typical calculation of 2D an-
nular BEC excitation spectrum: Plotted is
the eigenfrequency, ω, versus the angular
wavenumber, m, for the lowest branch of
the dispersion relation. The black data
points are the results of our numerical cal-
culation, obtained by diagonalisation of the
Bogoliubov-de Gennes equations. The red
dashed line is the critical angular velocity,
Ωc = min(ω(m)/m). The inset shows the ra-
dial density profile of the condensate (black
dashed line) and the density profile of the
excitation (red line), normalised to have the
same peak value.

To solve this problem we make use of the cylindrical symmetry of the problem and

reduce it to a one dimensional problem in the positive radial direction. For our mesh

of points in the radial direction r1...ri...rN , we define the vector of length 2N , Xi =

[u(r1), ...u(ri), ...u(rN ), v(r1), ...v(ri)..., v(rN )]. The Bogoliubov-de Gennes equations

can then be expressed as the matrix problem

Mi,jXi = ωXj , (B.7)

where Mij is a two dimensional matrix obtained from equations (B.5) and (B.6). To

discretise the gradient operators we use the standard form

∂ru(ri) ≈
u(ri+1)− u(ri)

∆r
(B.8)

and

∂2
ru(ri) ≈

u(ri+1)− 2u(ri) + u(ri−1)

∆r2
(B.9)

Calculating the eigenenergies of the excitations, ω, then amounts to finding the eigen-

values of a 2N × 2N matrix, the lowest branch of which gives the critical angular

velocity, Ωc = min(ω(m)/m). One can also obtain further insight from the density

distribution of the excitation, given by δnm(r) = 2Re[Φ(r)∗(um(r) + vm(r)∗)].

An example excitation spectrum is shown in figure B.2, along with the density

profile of the excitation in the inset. We note that to extend our calculations to very

low atom numbers, large mesh sizes are required to minimise the introduction of errors

as the width of the annulus becomes comparable to the grid spacing. A more efficient

formalism could make use of variable mesh spacing, implementing a coarse mesh in the

empty regions of the problem, and a finer mesh at the atoms.

Matlab code for calculating the ground state:

1 function Phi = CalculateGroundState()
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2

3 %Set up mesh grid for calculation

4 %Size of grid in radial oscillator lengths

5 L = 50;

6 %Number of points per dimension in grid

7 Ngrid = 512;

8 %Iteration step size in imaginary time

9 tau = 0.04;

10 %Distance between points in grid

11 ∆x = L/Ngrid;

12 %Real space grid

13 [x,y] = meshgrid(−L/2:∆x:L/2);

14 %Momentum space grid

15 [px,py] = meshgrid(−pi*Ngrid/L:2*pi/L:pi*Ngrid/L);
16 %Real space grid in cylindrical polar coordinates

17 [theta, r] = cart2pol(x,y);

18 %Convergence required for ground state calculation

19 lim = 10ˆ−12;
20

21 %=================Find the Ground State================%

22 %Guess initial trial wavefunction based on 2D TF profile

23 Phi0 = real(sqrt(real((1−((r−r0)/RTF).ˆ2).ˆ(3/2))));
24

25 Phi0 = Normalise(Phi0);

26 Phi = Phi0;

27 ∆u = 1;

28

29 %Iterate to find ground state

30 while (abs(∆u)>lim)

31

32 ustart = chemPot(Phi);

33 Phi = exp(−tau*(0.5*(r−r0).ˆ2+g*Phi.*conj(Phi))).*Phi;
34 Phi = fftshift(fft2(Phi));

35 Phi = exp(−tau*(0.5*px.ˆ2+0.5*py.ˆ2)).*Phi;
36 Phi = ifft2(ifftshift(Phi));

37 Phi = Normalise(Phi);

38 %Calculate chemical potential of new wavefunction

39 ustop = chemPot(Phi);

40 ∆u = abs((ustop−ustart)/ustart);
41

42 end

43 %=======================================================%

44

45 %==================Normalise Wavefunction===============%

46 function p = Normalise(Phi)

47

48 if (sum(sum(Phi.*conj(Phi))) 6=0)

49 p = Phi*sqrt(1/sum(sum(Phi.*conj(Phi)*(∆xˆ2))));

50 else

51 p = Phi;

52 end
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53

54 end

55 %=======================================================%

56

57 %==============Calculate chemical potential=============%

58 function u = chemPot(Phi)

59

60 if (sum(sum(Phi.*conj(Phi))) 6=0)

61 %Real space energy

62 V = (∆xˆ2)*sum(sum(conj(Phi).*((0.5*(r−r0).ˆ2).*Phi...
63 +g*(Phi.*conj(Phi)).*Phi)));

64 %Kinetic energy

65 K = (∆xˆ2)*sum(sum(conj(Phi).*ifft2(ifftshift((0.5*px.ˆ2+...

66 0.5*py.ˆ2).*fftshift(fft2(Phi))))));

67 u = (V+K)/((∆xˆ2)*sum(sum(conj(Phi).*Phi)));

68 else

69 u = 0;

70 end

71 end

72 %=======================================================%

73

74

75 end

Matlab code for calculating the excitation spectrum:

1 function Phi = CalculateExcitationSpectrum(Phi)

2

3 %Angular wavenumber of excitations to consider

4 m values = 0:60;

5

6 %Get Phi as a function of radial variable

7 PhiR = Phi(Ngrid/2+1,:);

8 R = x(Ngrid/2+1,:);

9 %Crop R and PhiR to exclude zero

10 PhiR = PhiR(logical(R>0));

11 R = R(logical(R>0));

12 ∆R = L/Ngrid;

13 n = size(R,2);

14

15 %=================Find the excitation spectrum================%

16

17 for i = 1:size(m values,2)

18 m = m values(i);

19

20 %Generate sparse matrix for diagonalising

21 %Create on diagonal terms relating to angular kinetic energy,

22 % trapping potential, mean field interactions, and chemical

23 % potenial

24 OnDiag = [(((m)ˆ2)./(2*R.ˆ2)+0.5*(R−r0).ˆ2+...
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25 2*g*(PhiR.*conj(PhiR))−u)...
26 (−((m)ˆ2)./(2*R.ˆ2)−0.5*(R−r0).ˆ2−...
27 2*g*(PhiR.*conj(PhiR))+u)];

28

29 %Create terms corresponding to double derivative term in the

30 %kinetic energy, dˆ2/drˆ2.

31 OnDiagKineticSecond = −0.5*[−1/(∆Rˆ2) −2*ones(1,n−2)/(∆Rˆ2)...

32 −1/(∆Rˆ2) 1/(∆Rˆ2) 2*ones(1,n−2)/(∆Rˆ2) 1/(∆Rˆ2)];

33 OneUpDiagSecond = −0.5*[ones(1,n−1)/(∆Rˆ2) 0 ...

−ones(1,n−1)/(∆Rˆ2)];

34 OneDownDiagSecond = −0.5*[ones(1,n−1)/(∆Rˆ2) 0 ...

−ones(1,n−1)/(∆Rˆ2)];

35

36 %Create terms corresponding to single derivative term in the

37 %kinetic energy d/dr.

38 OnDiagKineticFirst = −0.5*[−1./(R(1:n−1)*∆R) 1/(R(n)*∆R)...

39 1./(R(1:n−1)*∆R) −1/(R(n)*∆R)];

40 OneUpDiagKineticFirst = −0.5*[1./(R(1:n−1)*∆R) 0 ...

−1./(R(1:n−1)*∆R)];

41 OneDownDiagKineticFirst = −0.5*[zeros(1,n−2) −1/(R(n−1)*∆R)...

42 zeros(1,n−1) 1/(R(n−1)*∆R)];

43

44 OnDiagKinetic = OnDiagKineticSecond+OnDiagKineticFirst;

45 OneUpDiag = OneUpDiagSecond+OneUpDiagKineticFirst;

46 OneDownDiag = OneDownDiagSecond+OneDownDiagKineticFirst;

47

48 %Create the cross terms between the u(r) and v(r) equations

49 NOffDiag = g*PhiR.ˆ2;

50

51 %Build matrix from individual vectors created so far. All ...

elements

52 %not specified are set to zero

53 M = diag(OnDiag)+diag(OnDiagKinetic)+diag(OneUpDiag,1)+...

54 diag(OneDownDiag,−1)+diag(NOffDiag,size(R,2))+...
55 diag(−conj(NOffDiag),−(size(R,2)));
56

57

58 %Calculate eigenvectors and eignevalues of matirx M

59 [V,D] = eig(M,'nobalance');

60 W = diag(D);

61 %Extract lowest energy eigenvalue and the corresponding ...

eigenvector

62 [W,index] = sort(W);

63 Omega(i) = W(1);

64 Vector = V(:,index(1));

65 Vectors{i} = Vector;

66

67 end

68

69 %Anglin surface mode vc

70 w surface = abs(m values)*(sqrt(2)*(uˆ(1/6))/(r0+sqrt(2*u)));

198



B Numerical calculation of ring BEC excitation spectrum

71 %Local speed of sound vc

72 w sound = abs(m values)*(2*sqrt(u*hbar*wr/(3*mass))/(r0))/(ar*wr);

73 %vc from excitation spectrum

74 [CritW,mcrit] = ...

min(abs(Omega(abs(m values)>0)./m values(abs(m values)>0)));

75 w spectrum = abs(m values)*CritW;

76

77 end
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[43] D. Pines & P. Noziéres. The Theory of Quantum Liquids, vol. 2 (Perseus Books, 1999).

[44] R. L. D. Campbell, R. P. Smith, N. Tammuz, S. Beattie, S. Moulder & Z. Hadzibabic.

Efficient production of large 39K Bose-Einstein condensates. Phys. Rev. A 82, 063611

(2010).

[45] R. L. D. Campbell. Thermodynamic Properties of a Bose Gas with Tuneable Interactions.

Ph.D. thesis, University of Cambridge (2011).

[46] N. Tammuz. Thermodynamics of Ultracold 39K Atomic Bose Gases with Tuneable Inter-

actions. Ph.D. thesis, University of Cambridge (2011).

[47] N. Tammuz, R. P. Smith, R. L. D. Campbell, S. Beattie, S. Moulder, J. Dalibard &

Z. Hadzibabic. Can a Bose gas be saturated? Phys. Rev. Lett. 106, 230401 (2011).

[48] R. P. Smith, R. L. D. Campbell, N. Tammuz & Z. Hadzibabic. Effects of interactions on

the critical temperature of a trapped Bose gas. Phys. Rev. Lett. 106, 250403 (2011).

[49] R. P. Smith, N. Tammuz, R. L. D. Campbell, M. Holzmann & Z. Hadzibabic. Condensed

fraction of an atomic Bose gas induced by critical correlations. Phys. Rev. Lett. 107,

190403 (2011).

[50] R. P. Smith, S. Beattie, S. Moulder, R. L. D. Campbell & Z. Hadzibabic. Condensation

dynamics in a quantum-quenched Bose gas. Phys. Rev. Lett. 109, 105301 (2012).

[51] A. L. Gaunt, R. J. Fletcher, R. P. Smith & Z. Hadzibabic. A superheated Bose-condensed

gas (2012). arXiv:1212.5833.

203

http://rspa.royalsocietypublishing.org/content/238/1213/204.full.pdf+html
arXiv:1212.5833


Bibliography

[52] C. C. Tannoudji, G. Grynberg & J. Dupont-Roe. Atom-photon interactions (John Wiley

and Sons, 1992).

[53] M. Kasevich & S. Chu. Laser cooling below a photon recoil with three-level atoms. Phys.

Rev. Lett. 69, 1741–1744 (1992).

[54] S. E. Harris. Electromagnetically induced transparency. Physics Today 50, 36–42 (1997).

[55] C. J. Foot. Atomic Physics (Oxford University Press, 2005).

[56] K. Bergmann, H. Theuer & B. W. Shore. Coherent population transfer among quantum

states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998).

[57] C. Zener. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of

London. Series A 137, 696–702 (1932). http://rspa.royalsocietypublishing.org/

content/137/833/696.full.pdf+html.

[58] R. Grimm, Weidemüller & Y. B. Ovchinnikov. Optical dipole traps for neutral atoms.

Adv. At. Mol. Opt. Phys. 42, 95 (2000).

[59] E. L. Raab, M. Prentiss, A. Cable, S. Chu & D. E. Pritchard. Trapping of neutral sodium

atoms with radiation pressure. Phys. Rev. Lett. 59, 2631 (1987).

[60] P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould & H. J. Metcalf.

Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169

(1988).

[61] J. Dalibard & C. Cohen-Tannoudji. Laser cooling below the Doppler limit by polarization

gradients: simple theoretical models. J. Opt. Soc. Am. B 6, 2023 (1989).

[62] G. Breit & I. I. Rabi. Measurement of nuclear spin. Phys. Rev. 38, 2082 (1931).

[63] E. Majorana. Atomi orientati in campo magnetico variabile. Nuovo Cimento 9, 43 (1932).

[64] T. H. Bergeman, P. McNicholl, J. Kycia, H. Metcalf & N. L. Balazs. Quantized motion

of atoms in a quadrupole magnetostatic trap. J. Opt. Soc. Am. B 6, 2249–2256 (1989).

[65] W. Petrich, M. H. Anderson, J. R. Ensher & E. A. Cornell. Stable, tightly confining

magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett. 74, 3352 (1995).

[66] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto & I. B. Spielman.

Bose-Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett.

102, 130401 (2009).

[67] F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno & A. Simoni.

Feshbach spectroscopy of a K-Rb atomic mixture. Phys. Rev. A 73, 040702 (2006).

[68] E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen & B. J. Verhaar.

Interisotope determination of ultracold rubidium interactions from three high-precision

experiments. Phys. Rev. Lett. 88, 093201 (2002).
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