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We scrutinize the concept of saturation of the thermal component in a partially condensed trapped Bose

gas. Using a 39K gas with tunable interactions, we demonstrate strong deviation from Einstein’s textbook

concept of a saturated vapor. However, the saturation picture can be recovered by extrapolation to the

strictly noninteracting limit. We provide evidence for the universality of our observations through

additional measurements with a different atomic species, 87Rb.
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Bose-Einstein condensation is unique among phase tran-
sitions between different states of matter in the sense that it
occurs even in the absence of interactions between parti-
cles. In Einstein’s textbook picture of an ideal gas, purely

statistical arguments set an upper bound NðidÞ
c on the num-

ber of bosons N0 occupying the excited states of the
system. Increasing the total number of particles above

the critical value NðidÞ
c results in saturation of the excited

states and macroscopic occupation of the ground state,
i.e., Bose-Einstein condensation [1–4].

The condensation observed in weakly interacting, har-
monically trapped atomic Bose gases [5–7] is generally
believed to provide a faithful illustration of the statistical
phase transition proposed by Einstein. In this case, the
ideal gas saturation prediction is given by [8]

N0 � NðidÞ
c ¼ �ð3Þ

�
kBT

@ �!

�
3
; (1)

where T is the temperature, �! is the geometric mean of the
trapping frequencies along the three spatial dimensions,
and � is the Riemann function [�ð3Þ � 1:202].

However, differences from ideal gas condensation are
also observed, for example, in the small deviations of the

measured critical atom number Nc from NðidÞ
c [9–11]. In

this Letter, we focus on the concept of saturation as the
underlying mechanism driving the transition. One might
expect that the saturation inequality (1) is essentially sat-
isfied in these systems, with just the value of the bound on
the right-hand side slightly modified. We prove that this is
far from being the case and show how to reconcile experi-
mental findings with the prediction (1). To do this, we use
an ultracold gas of potassium (39K) atoms, in which the
strength of interactions can be tuned via a Feshbach scat-
tering resonance [12,13].

The crucial step in our work is a proper disentanglement
of the subtle role of interactions in condensation. While
Einstein’s statistical argument does not explicitly invoke
interactions between the particles, it does assume that the

gas is in thermal equilibrium, which is fundamentally
impossible to attain in a completely noninteracting system
[14]. We overcome this problem by making measurements
at a range of interaction strengths, always sufficient to
ensure thermal equilibrium, and then extrapolating our
results to the noninteracting limit, where the saturation
picture is recovered.
We perform conceptually simple experiments in which

we keep the temperature of the gas constant and vary the
atom number. We start with a partially condensed gas of
39K atoms in the jF;mFi ¼ j1; 1i lower hyperfine ground
state, produced in a crossed optical dipole trap [16] [see
Fig. 1(a)]. The optical potential near the bottom of the trap
is close to harmonic, with �!=2� varying between 60 and
80 Hz for data taken at different temperatures. We tune the
strength of repulsive interactions in the gas, characterized
by the positive s-wave scattering length a, by applying
a uniform external magnetic field in the vicinity of a
Feshbach scattering resonance centered at 402.5 G [17].
We always prepare the condensed gas at a ¼ 135a0, where
a0 is the Bohr radius, and then adjust the scattering length
to the desired value by changing the applied magnetic field
[18]. In a given experimental series, the temperature is kept
constant by fixing the depth of our optical trap, and the
atom number is varied by holding the gas in the trap for a
variable time up to several tens of seconds. During this
time the total atom number slowly decays due to three-
body recombination, scattering of photons from the trap-
ping laser beams, and collisions with the background gas in
the vacuum chamber, while elastic collisions among the
trapped atoms ensure equilibrium redistribution of parti-
cles between the condensate and the thermal gas [19].
An example of an experimental series, taken at

a ¼ 135a0 and T ¼ 177 nK, is shown in Fig. 1(b). For
each hold time between 1 and 110 s, we extract the number
of atoms in the condensate, N0, and in the thermal gas, N0,
from a bimodal fit to the density distribution of the gas after
18 ms of free time-of-flight expansion from the optical
trap [20,21]. We plot N0 and N0 versus the total number
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of atoms, Ntot, which is extracted independently by a direct
summation over the density distribution. We find that
Ntot ¼ N0 þ N0 is satisfied for all data points to within
0.5%. The standard deviation of the temperature for all
the points where the condensate is present is 3 nK [18].

The predictions for the number of condensed and ther-
mal atoms in a saturated gas are shown in Fig. 1(b) by
the blue and red solid lines, respectively. Specifically, for
Ntot >Nc, the thermal atom number N0 remains constant
and equal to Nc. The deviation of the experimental data
from this prediction is striking. As the total number
of atoms is increased from the measured critical value
Nc � 200 000 to 450 000, only half of the additional atoms
accumulate in the condensate.

In Fig. 2, we show the results of 18 experimental series
taken at a wide range of scattering lengths (40a0<
a< 356a0) and temperatures (115 nK< T < 284 nK).
Here we focus on the regime Ntot >Nc, where the conden-
sate is present, and plot N0 versus Ntot � Nc. The solid line
shows the prediction for a fully saturated thermal compo-
nent: N0 ¼ Ntot � Nc. The deviation of the data from this
prediction is clearly observable in all the series and grows
with both a and T.

To explore the relationship between the nonsaturation of
our Bose gases and the interatomic interactions, we start by
identifying the relevant interaction energy. Because of the
large ratio between the average densities of the condensed
and thermal fractions, the nonideal behavior of the thermal

component primarily results from its interaction with
the condensate. The relevant energy scale is thus [22]

�0 ¼ @ �!

2

�
15N0

a

aho

�
2=5

; (2)

where aho ¼ ð@=m �!Þ1=2 is the spatial extension of the
ground state of the harmonic oscillator of frequency �!
and m is the atomic mass. The energy �0 is the mean-field
prediction for the chemical potential of a gas with N0

atoms at T ¼ 0 and in the Thomas-Fermi limit [22].
Guided by this scaling, in Fig. 3 we plot the thermal

atom number N0 as a function of N2=5
0 , for the same

experimental series as shown in Fig. 1(b). From here we
proceed in two steps: First, we show that the initial linear

increase of N0 with N2=5
0 can be quantitatively accounted

for by the mean-field Hartree-Fock (HF) theory for a
harmonically trapped gas. Second, for the regime of larger
condensates, where the theory does not fully reproduce the
experimental data, we adopt a more heuristic approach that
still allows us to prove the concept of a saturated gas in the
noninteracting limit.
In the HF approach, one treats the thermal fraction as an

ideal gas but takes into account repulsive interactions
with the condensate. Within this theory [22,23], one gets

Nc ¼ NðidÞ
c and can predict a linear variation of N0=Nc with

the small parameter �0=kBT:

N0

Nc

¼ 1þ �
�0

kBT
; (3)

with � ¼ �ð2Þ=�ð3Þ � 1:37 [18]. The origin of this non-
saturation can be understood by noting that interactions
with the condensate modify the effective potential seen by
the thermal atoms from a parabola into a ‘‘Mexican hat’’
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FIG. 2 (color online). Deviation from the saturation picture at
a range of interaction strengths and temperatures. We plot N0

versus Ntot � Nc for 18 experimental series, each at fixed a and
T. The values of the scattering length (40–356a0) and the
temperature (115–284 nK) are encoded in the color of the
data points. The solid line is the prediction for a saturated gas:
N0 ¼ Ntot � Nc.
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FIG. 1 (color online). Lack of saturation of a Bose gas.
(a) Experimental scheme. The temperature T of a 39K gas is
fixed by the depth of a crossed optical dipole trap, and the
scattering length a is controlled via a Feshbach resonance. The
number of thermal (N0) and condensed (N0) atoms is extracted
from bimodal fits to the density distribution after 18 ms of time-
of-flight expansion from the trap. (b) N0 (red points) and N0

(blue points) versus the total atom number Ntot at T ¼ 177 nK
and a ¼ 135a0. The corresponding predictions for a saturated
gas are shown by red and blue solid lines. The critical point
Ntot ¼ Nc is marked by a vertical dashed line.
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shape; this allows the thermal component to occupy a
larger volume, which grows with increasing N0 [24].

From Eqs. (2) and (3) we define the nonsaturation

slope SHF¼dN0=dðN2=5
0 Þ¼1:37X, where X is the dimen-

sionless parameter X ¼ �T2a2=5, with � ¼ 0:5�ð3Þ152=5
ðkB=@ �!Þ2a�2=5

ho . The blue line in Fig. 3 corresponds to

this prediction, with the intercept fixed by the measured
Nc. It agrees with the data very well for small condensates,
with N0 & 104, corresponding to �0=kBT & 0:1.

To quantitatively test the prediction of Eq. (3), we
took several series at different scattering lengths (a ¼
56–274a0) and temperatures (T ¼ 177–317 nK), specifi-
cally focusing on very small values of N0. We turn off
interactions during time of flight, so that the small con-
densates almost do not expand and can be reliably detected
and characterized in absorption imaging. For each series

we fit the initial nonsaturation slope, S0 ¼ dN0=dðN2=5
0 Þ

for N0 ! 0, and compare the result with the prediction
SHF ¼ 1:37X [26]. As shown in Fig. 4, the experiment and
theory agree within a few percent.

The agreement of experiments with Eq. (3) for small N0

is the first main quantitative result of this Letter and allows
us to deduce that the initial nonsaturation slope S0 would
indeed vanish in the noninteracting limit, where �0 ! 0
for any N0. This, however, does not complete our experi-
mental proof, since this theory works very well only for
small condensed fractions (see Fig. 3). For the larger, and
experimentally more typical, values of N0, the nonsatura-
tion of the thermal component is even more pronounced.

To quantitatively study nonsaturation effects at larger
N0, we take the following heuristic approach: Although the

observed increase of N0 with N2=5
0 is not perfectly linear,

over a broad experimentally relevant range it can be well

quantified by a coarse-grained slope S ¼ �½N0�=�½N2=5
0 �,

as indicated in Fig. 3 by the red solid line. In order to treat
all the data taken at various values of a and T equally, for
each experimental series we consider the same range of
values of �0=kBT, from 0.1 to 0.3. Note that this range
covers more than an order of magnitude of N0 values and
encompasses the bulk of the data shown in Fig. 2 [27].
In Fig. 4, we summarize the nonsaturation slopes Sða; TÞ

for the same 18 experimental series shown in Fig. 2. Within
experimental error, all data points fall onto a straight
line when plotted against the dimensionless parameter

X ¼ �T2a2=5, supporting the assumption that we can still
use �0=kBT as the relevant interaction parameter. To fur-
ther validate our approach, we took additional data with a
different atomic species, 87Rb, in the jF;mFi ¼ j2; 2i state.
In this case a ¼ 99a0 is not tunable, and the two experi-
mental series were taken at T ¼ 175 and T ¼ 203 nK.
These two points are in close agreement with the 39K data.
The prediction (1) for an ideal gas (a ¼ 0) corresponds

to S ¼ 0 at the origin of the graph in Fig. 4. The
mathematical limit X ! 0 is reached in two physically
very different limits: a ! 0 and T ! 0. In the mundane
T ! 0 limit, N0 inevitably vanishes for any value of N0,
so trivially S ¼ 0. It is therefore essential that our
experiments show that S depends only on the parameter

X / T2a2=5, allowing us to deduce its value in the a ! 0
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FIG. 3 (color online). Quantifying the lack of saturation. Here

N0 is plotted as a function of N2=5
0 for the same series as in

Fig. 1(b). The horizontal dotted line is the saturation prediction
N0 ¼ Nc. The blue line is the mean-field Hartree-Fock result
for a harmonically trapped gas (see the text), with a slope SHF ¼
699. The red line is a linear fit to the data in the range
corresponding to 0:1<�0=kBT < 0:3, which gives a nonsatura-
tion slope S ¼ 1283� 84. The solid black line is a guide to the
eye based on a second-order polynomial fit. The initial slope of
this line is indistinguishable from HF theory.
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FIG. 4 (color online). Saturation in the noninteracting limit.
The nonsaturation slopes S0 and S are plotted versus the dimen-
sionless parameter X ¼ �T2a2=5 (see the text). The S0 data are
directly compared with Hartree-Fock theory, SHF ¼ 1:37X (blue
line), with no free parameters. For the S data, a linear fit (red
line) gives dS=dX ¼ 2:6� 0:3 and an intercept Sð0Þ ¼ �20�
100, consistent with complete saturation in the ideal gas limit.
The S data are based on the 18 39K series shown with the same
symbol code in Fig. 2 and two additional series taken with 87Rb
(black squares). All vertical error bars are statistical. The system-
atic uncertainty in atom numbers N0 and N0 is <10%, corre-
sponding to <6% uncertainty in S0 and S values. The horizontal
error bars include the 3 Hz uncertainty in the trapping frequen-
cies �!=2� and (for potassium) the 0.1 G uncertainty in the
position of the Feshbach resonance.
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limit for any fixed T. The solid line in Fig. 4 shows the
result of an unconstrained linear fit to the data, which gives
an intercept consistent with zero: Sð0Þ ¼ �20� 100.
Together with the success of HF theory in the small N0

regime, this confirms the concept of a saturated Bose gas
for a broad range of experimentally relevant parameters.

We expect our results to be generic to experiments on
harmonically trapped 3D Bose gases with (relatively weak)
short-range s-wave interactions. However, a number of
important questions remain open. Here we studied only
the global properties of the gas, inferred from the number
of atoms in condensed and thermal components; in the
future, it would be of great interest to also study saturation
at the level of local densities of the two components and
effectively measure the equation of state for a bulk system
[28]. Local saturation should depend only on the interac-
tions between particles but could, for example, be different
in systems with very strong or long-range interactions,
where the emergence of a roton minimum significantly
increases the density of states for low energy excitations.
Global saturation additionally depends on the external
potential, and from purely geometric arguments we expect
the nonsaturation effects to growwith the dimensionality of
the system. In this respect it would be particularly interest-
ing to study them for atomic gases in disordered potentials
[29], where the possible fractal nature of the fluid shape can
lead to a noninteger effective dimensionality.

In conclusion, our work shows that the purely statistical
picture of a saturatedBose gas is not realized in experiments
with harmonically trapped atomic vapors. However, ex-
trapolation of our results to the strictly noninteracting limit
allows us to confirm the textbook picture of Bose-Einstein
condensation as a purely statistical phase transition in an
ideal gas. Ultracold atomic gases offer great experimental
flexibility for further studies of (non)saturation effects,
which may provide a fruitful way of classifying different
geometries and interactions in many-body systems.
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