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Any state of matter is classified according to its order, and the type
of order that a physical system can possess is profoundly affected
by its dimensionality. Conventional long-range order, as in a
ferromagnet or a crystal, is common in three-dimensional systems
at low temperature. However, in two-dimensional systems with a
continuous symmetry, true long-range order is destroyed by
thermal fluctuations at any finite temperature1,2. Consequently,
for the case of identical bosons, a uniform two-dimensional fluid
cannot undergo Bose–Einstein condensation, in contrast to the
three-dimensional case. However, the two-dimensional system can
form a ‘quasi-condensate’ and become superfluid below a finite
critical temperature. The Berezinskii–Kosterlitz–Thouless (BKT)
theory3,4 associates this phase transition with the emergence of a
topological order, resulting from the pairing of vortices with
opposite circulation. Above the critical temperature, proliferation
of unbound vortices is expected. Here we report the observation of
a BKT-type crossover in a trapped quantum degenerate gas of
rubidium atoms. Using a matter wave heterodyning technique, we
observe both the long-wavelength fluctuations of the quasi-
condensate phase and the free vortices. At low temperatures, the
gas is quasi-coherent on the length scale set by the system size.
As the temperature is increased, the loss of long-range coher-
ence coincides with the onset of proliferation of free vortices.
Our results provide direct experimental evidence for the micro-
scopic mechanism underlying the BKT theory, and raise new
questions regarding coherence and superfluidity in mesoscopic
systems.
The BKT mechanism is very different from the usual finite-

temperature phase transitions. It does not involve any spontaneous
symmetry-breaking and emergence of a spatially uniform order
parameter. Instead, the low-temperature phase is associated with a
quasi-long-range order, with the correlations of the order parameter
(for example, the macroscopic wavefunction of a Bose fluid) decay-
ing algebraically in space. Above the critical temperature this quasi-
long-range order is no longer maintained, and the correlations decay
exponentially. This picture is applicable to a wide variety of two-
dimensional (2D) phenomena, including superfluidity in liquid
helium films5, the superconducting transition in arrays of Josephson
junctions6, and the collision physics of 2D atomic hydrogen7. These
experiments have provided evidence for the BKT phase transition by
looking at the macroscopic properties of the system, but could
not reveal its microscopic origin—the binding and unbinding of
vortex–antivortex pairs3,4.
Harmonically trapped atomic gases generally provide an excellent

testing ground for the theories of many-body physics. In particular,
they arewell suited for thepreparation of low-dimensional systems and
the detection of individual vortices. Quasi-2D quantum degenerate
Bose gases have been produced in single ‘pancake’ traps or at the
nodes of one-dimensional (1D) optical lattice potentials8–15.
Recently, matter wave interference between small disk-shaped

quasi-condensates has revealed the occasional presence of free
vortices16, but a systematic temperature study was not possible.
Theoretically, because the density of states in a 2D harmonic trap
allows for finite temperature Bose–Einstein condensation in an ideal
gas17, the nature of the superfluid transition in an interacting gas has
been a topic of some debate18–24. Our results indicate that the BKT
picture is applicable to these systems, even though in our finite-size
system the transition occurs as a finite-width crossover rather than a
sharp phase transition25.
We start our experiments with a quantum degenerate three-

dimensional (3D) cloud of 87Rb atoms, produced by radio-frequency
evaporation in a cylindrically symmetric magnetic trap. Next, a 1D
optical lattice with a period of d ¼ 3mm along the vertical direction z
is used to split the 3D gas into two independent clouds and to
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Figure 1 | Probing the coherence of 2D atomic gases using matter wave
heterodyning. a, An optical lattice potential of period d ¼ 3mm along the
vertical direction z is formed by two laser beamswith awavelength of 532 nm
intersecting at a small angle. It is used to split a quantum degenerate 3D gas
into two independent planar systems. The transparent ellipsoid indicates the
shape of the gas before the lattice is ramped up. b, After the confining
potential is abruptly switched off, the two atomic clouds expand, overlap
and interfere. The interference pattern is recorded onto a CCD camera using
the absorption of a resonant probe laser. The waviness of the interference
fringes contains information about the phase patterns in the two planar
systems. c, d, Examples of interference patterns obtained at a low and a high
temperature, respectively.
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compress them into the 2D regime (Fig. 1a). To minimize heating
and ensure thermal equilibrium, the lattice potential is ramped up
slowly over 500ms, and the clouds are allowed to equilibrate for
another 200ms. At full laser power, the height of the lattice potential
is V0/h ¼ 50 kHz, where h is Planck’s constant. At this lattice height,
the tunnelling between the two planes is negligible on the timescale of
the experiment, and the motion along the tight confining direction z
is ‘frozen out’14,16. The two clouds form parallel, elongated 2D strips,
characterized by the harmonic trapping frequencies of 11Hz, 130Hz
and 3.6 kHz along the x, y and z directions, respectively. The number
of condensed atoms per plane is a function of temperature and varies
between 0 and 5 £ 104, whereas the total atom number per plane is
,105. For the largest (quasi-)condensates, the Thomas–Fermi
approximation yields 120 mm and 10 mm for the x and y lengths of
the strips, respectively. The corresponding chemical potential and
healing length are respectively m/h ¼ 1.7 kHz and y ¼ 0.2 mm.
After the trapped 2D gases have equilibrated, all confining poten-

tials are abruptly turned off. The two clouds expand predominantly
perpendicular to the x–y plane and, as they overlap, a 3Dmatter wave
interference pattern forms26. After t ¼ 20ms of ‘time-of-flight’
(TOF) expansion, the projection of the 3D interference pattern
onto the x–z plane is recorded on a CCD camera, using a resonant
probe laser directed along y (Fig. 1b). At any fixed position x, the
interference pattern along z is characterized by its contrast c(x) and
phase J(x). To extract these two parameters, we fit the density
distribution with a function:

Fðx; zÞ ¼ Gðx; zÞ½1þ cðxÞ cos ð2pz=DþJðxÞÞ�

where G(x,z) is a gaussian envelope, D ¼ ht/md is the period of the
interference fringes, and m is the atomic mass. The function c(x) is a
measure of the local coherence in the 2D clouds (with some coarse
grain averaging due to the integration along the imaging axis y), while
the variation of J(x) with x is a measure of the long-range coherence.
With increasing temperature, the presence of phase fluctuations in the
two planes increases the waviness of the interference fringes, that is,
the fluctuations in J(x) (compare Fig. 1c and d).
In order to explore different temperature regimes for the 2D gas,

we vary the final radio frequency n rf used in the evaporative cooling
of the initial 3D gas. The temperature T 3D is proportional to
Dn¼ nrf 2 nðminÞ

rf , where n rf
(min) is the final radio frequency that

completely empties the trap. We explore the range between the
onset of condensation in the 3D gas (T3D ¼ 150 nK) and a quasi-
pure 3D Bose–Einstein condensate. As the lattice is ramped up, the
temperature of the compressed gas can increase significantly (2–3
times), but precise direct thermometry in the lattice is difficult.
Instead, in order to quantify the degeneracy of the 2D system, we
measure the local contrast in the centre of the interference pattern,
c 0 ¼ kc(0)l, where k…l denotes an average over many images
recorded under the same experimental conditions (temperature
and atom number).
The dependence of c0 on the initial T3D (that is, Dn) is shown in

Fig. 2. The interference fringes are visible for Dn , 35 kHz, which
closely corresponds to the range of condensation in the initial 3D gas.
As Dn is lowered, c0 grows smoothly. For Dn below ,12 kHz, the
initial 3D Bose–Einstein condensate is essentially pure and c 0
saturates at about 30%. In an ideal experiment, the expected contrast
at zero temperature is c0 ¼ 1. The finite resolution of our imaging
system limits the maximal observable contrast to about 60%. We
attribute the difference between expected and measured maximal
contrasts to the residual heating of the gas in the optical lattice,
caused in particular by the three-body recombination processes. This
hypothesis is supported by the fact that the atoms experience the
lattice potential over 700ms, which is not negligible compared to
the measured lifetime of 2.5 s for the atom cloud in the lattice. In the
following, we use c0 rather than T3D as a direct measure of the
degeneracy of the 2D gas.
We now turn to a quantitative analysis of long-range correlations

as a function of temperature. The coherence in the system is encoded
in the first-order correlation function:

g1 ðr; r
0
Þ ¼ kw*ðrÞwðr

0
Þl

where w(r) is the fluctuating bosonic field at position r. From
interference signals recorded at different positions along the x axis,
one can extract information about g 1, as well as higher-order
correlation functions27. Here we adopt an analysis method proposed
in ref. 28. The idea is to partially integrate the 3D interference pattern
over lengths Lx and Ly, along the x and y directions respectively, and
study how the resulting contrast C decays with the integration
lengths. Specifically, in a uniform system and for Lx .. Ly, the
average value of C2 should behave as:

kC2ðLxÞl <
1

Lx

ðLx

0

dx½g1ðx;0Þ�
2 /

1

Lx

� �2a

ð1Þ

The long-range physics is then captured in a single parameter, the
exponent a, which describes the decay of kC2l with Lx. The expected
values of amay be understood in two simple limits. In a system with
true long-range order, g1 would be constant and the interference
fringes would be perfectly straight. In this case a ¼ 0, corresponding
to no decay of the contrast upon integration. In the opposite limit, if
g1 decays exponentially on a length scale much shorter than Lx, the
integral in equation (1) is independent of Lx. In this case a ¼ 0.5,
corresponding to adding up local interference fringes with random
phases14. One of the central predictions of the BKT theory is that at
the transition, the superfluid density should suddenly jump to a
finite value that is a universal function of the transition tempera-
ture29. When adapted to the interference measurements with uni-
form 2D Bose gases28, this ‘universal jump in superfluid density’
corresponds to a sudden drop in a from 0.5 to 0.25.
In our experiments, integration along y is automatically per-

formed in absorption imaging, with Ly < 10mm fixed by the size
of the quasi-condensates. Our system is also not uniform along x, and
the average local contrast cx ¼ kc(x)l decreases smoothly towards the
edges of the quasi-condensate owing to the increasing effects of
thermal excitations. For comparison with theory, we consider the
integrated contrast:

~CðLxÞ ¼
1

Lx

ðLx=2

2Lx=2

cðxÞ eiJðxÞ dx

�����
�����

This would exactly coincide with C in a uniform system. We extract
the exponent a using only the quasi-uniform region where
cx . 0.5c0. Figure 3a shows examples of the measured kC̃2l as a

Figure 2 | Local coherence as a thermometer. The average central contrast
c0 of the interference patterns is plotted as a function of the parameter Dn
controlling the temperature of the 3D gas before loading the optical lattice.
The solid line is a fit to the data using the empirical function
c0 ¼ cmax ½12 ðDn=Dn0Þ

g�, with cmax ¼ 0.29 ^ 0.2, Dn0 ¼ 35 ^ 1 kHz and
g ¼ 2.3 ^ 0.4. The total number of images used for the plot is 1,200,
corresponding to 41 measurements of c0. Different measurements of c0
taken at equal Dn have been averaged. The displayed error bar indicates the
largest standard deviation.
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function of Lx at a low and a high temperature, along with the fits by a
power-law decaying function.
Figure 3b summarizes the fitted values of the exponent a in

different temperature regimes, and constitutes the first main result
of this Letter. Starting at high temperatures, for values of c0 up to
about 13%, a is approximately constant and close to 0.5. When the
temperature is reduced further,a rapidly drops to about 0.25, and for
even lower temperatures (larger c0) it levels off. We thus clearly
observe a transition between two qualitatively different regimes at
high and low temperatures. The values of a above and below the
transition are in agreement with the theoretically expected jump in
the superfluid density at the BKT transition in a uniform system.
However, this quantitative agreement might be partly fortuitous.
Even though we concentrated on the quasi-uniform part of the
images, the geometrical effects in our elongated samples could still be
important. Ultimately, at extremely low temperature, a should
slowly tend to zero and the gas should become a pure, fully coherent
Bose–Einstein condensate. We could not reach this regime in the
present experiments owing to the residual heating discussed above.
Even without precise thermometry, we can estimate the cloud’s

temperature and density at the onset of quasi-long-range coherence.
For images with c0 ¼ 0.15, the temperature inferred from the wings
of the atom distribution after TOF is 290 ^ 40 nK, corresponding to
a thermal wavelength of l ¼ 0.3 mm. From the length of the quasi-
condensate we deduce the number of condensed atoms
NC ¼ 11,000 ^ 3,000, and the peak condensate density (in the
trap centre) rC ¼ (5 ^ 1) £ 109 cm22. This gives rCl

2 ¼ 6 ^ 2.
BKT theory for a uniform system predicts the transition at

rSl
2 ¼ 4, where rS is the superfluid density. The two values are in

fair agreement, but we note that the exact relation between rC and rS

in 2D atomic gases will require further experimental and theoretical
investigation. For example, our observation of a < 0.5 for a finite
value of c0 suggests that the superfluid density rS might be zero even
if the condensate density rC is finite.
The key role in the microscopic BKT theory is played by vortices,

localized topological defects in the phase of the condensate. In
contrast to the smooth variation of the fringe phase J(x) created
by long-wavelength phonons (Fig. 1d), a free vortex in one of the
condensates should appear as a sharp dislocation in the interference
pattern16,24, with J(x) changing abruptly across a dislocation line
parallel to the expansion axis z. We indeed occasionally observe such
dislocations. Examples of images containing one and several disloca-
tions are shown in Fig. 4a and b, respectively. The tightly bound
vortex–antivortex pairs are not detectable in our experiments
because they create only infinitesimal phase slips in the interference
pattern. Other phase configurations which could mimic the appear-
ance of a vortex, such as a dark soliton aligned with the imaging
direction, can be discarded on theoretical grounds24.
Figure 4c shows the frequency with which we detect sharp

dislocations at different temperatures. For the count we consider
only the central, 30-mm-wide region of each image, which is smaller
than the length of our smallest quasi-condensates. We note that we
detect only a subset of vortices—those that are well isolated and close
to the centre of the cloud. We also note that thermally activated
phonon modes with a very short wavelength along x can in principle
contribute to the count. Their contribution is expected to be non-
negligible only at the highest temperatures, at which a detailed
theoretical analysis would be needed to separate their effect from
that of the vortices.
The observed sudden onset of vortex proliferation with increasing

temperature constitutes the second main result of this Letter. Further,
this onset coincides with the loss of quasi-long-range coherence
(Fig. 3b). These two observations together provide conclusive evidence
for the observation of the BKT crossover in this system.

Figure 3 | Emergence of quasi-long-range order in a 2D gas. a, Examples of
average integrated interference contrasts kC̃2(Lx)l are shown for a low (blue
circles, c0 ¼ 0.24) and a high (red squares, c0 ¼ 0.13) temperature; Lx is the
integration length. The lines are fits to the data by the power-law function
1/(Lx)

2a, and give a ¼ 0.29 ^ 0.01 (low temperature) and a ¼ 0.46 ^ 0.01
(high temperature). The fitting range, indicated by the solid part of the line,
is constrained by the conditions Lx .. Ly on the left and cx . c0/2 on the
right. b, Decay exponent a as a function of c0. Dashed lines indicate the
theoretically expected values of a above and below the BKT transition in a
uniform system. Error bars indicate the standard deviation of the results
from different experimental runs.

Figure 4 | Proliferation of free vortices at high temperature. a, Example of
an interference pattern showing a sharp dislocation that we attribute to the
presence of a free vortex in one of the interfering clouds. b, Interference
pattern showing several dislocations. c, Fraction of images showing at least
one dislocation in the central, 30-mm-wide region, plotted as a function of c0.
The error bars show the statistical uncertainty, given by the square root of
the number of images with dislocations. Inset, histogram of the phase
jumps DJ i ¼ jJ(x i) 2 f(x iþ1)j between adjacent CCD pixel columns, for
the set of images in the bin c0 ¼ 0.08. An image is counted as showing a
dislocation if at least one of theDJ i exceeds 2p/3 (threshold indicated by the
dashed line). The distance between adjacent columns is 2.7 mm and the
count runs over the 10 central columns. There are 97 images contributing to
this histogram, hence 970 counts, among which 16 counts (corresponding to
13 different images) exceed the threshold.
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Our experiments support the notion that the unbinding of
vortex–antivortex pairs is the microscopic mechanism destroying
the quasi-long-range coherence in 2D systems. The related question
of the superfluidity of the sample remains open. It could be
addressed in the future by setting the planar gases in rotation and
studying the ordering of the vortex lattice. Alternatively, a study of
the damping of the collective eigenmodes of the gas could be used
to infer its viscosity. Our experiments may also raise new theoretical
questions related to the geometry and the mesoscopic nature of the
system.
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