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We study the stability of a thermal 39K Bose gas across a broad Feshbach resonance, focusing on the

unitary regime, where the scattering length a exceeds the thermal wavelength �. We measure the general

scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom

number. Both at unitarity and for positive a � � we find agreement with three-body theory. However, for

a < 0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss

coefficient, L3 / �4, is 3 times lower than the universal theoretical upper bound. This reduction is a

consequence of species-specific Efimov physics and makes 39K particularly promising for studies of

many-body physics in a unitary Bose gas.
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The control of interactions provided by Feshbach reso-
nances makes ultracold atomic gases appealing for studies
of both few- and many-body physics. On resonance, the
s-wave scattering length a, which characterizes two-body
interactions, diverges. At and near the resonance a gas is in
the unitary regime, where the interactions do not explicitly
depend on the diverging a. Instead, a is replaced by
another natural length scale. In a degenerate gas this length
scale is set by the interparticle spacing; in a thermal gas it is
set by the thermal wavelength � ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p
, wherem

is the particle mass and T is the temperature.
Over the past decade, there have been many studies of

the unitary Fermi gas [1]. More recently, there has been an
increasing interest in both universal and species-specific
properties of a unitary Bose gas [2–15]. It is however an
open question to what extent this state can be studied in
(quasi-)equilibrium, since at unitarity three-body recombi-
nation leads to significant particle loss and heating [16].
The severity of this instability is not universal [10], as it
depends on the species-specific few-body Efimov physics
[8,18–28]. Characterizing and understanding the stability
of a unitary Bose gas is thus important both from the
perspective of Efimov physics and for identifying suitable
atomic species for many-body experiments.

The per-particle loss rate due to three-body recombina-
tion is given by

�3 � � _N=N ¼ L3hn2i; (1)

where N is the atom number, L3 is the three-body loss
coefficient, n is the density, and h� � �i denotes an average
over the density distribution in a trapped gas. Away from
unitarity, L3 � @a4=m [29,30], with a dimensionless
prefactor exhibiting additional variation with a due to
Efimov physics [19,27]. At unitarity L3 should saturate at
�@�4=m / 1=T2. Experimental evidence for such satura-
tion was observed in [8,10,18]. More quantitatively, at
unitarity we expect

L3 � �
9

ffiffiffi
3

p
@

m
�4 ¼ �

36
ffiffiffi
3

p
�2

@
5

m3ðkBTÞ2
; (2)

where � � 1 is a species-dependent, nonuniversal dimen-
sionless constant [10] (see also Refs. [31–33]).
Similar scaling arguments apply to the two-body elastic

scattering rate,�2, which drives continuous re-equilibration
of the gas during loss and heating. Away from unitarity
�2 / hni@a2=ðm�Þ; hence, at unitarity �2 / hni@�=m. The
possibility to experimentally explore many-body physics of
a quasiequilibrium unitary Bose gas depends on the ratio
�3=�2. Remarkably, at a given phase-space density, n�3,
this ratio depends only on the species-specific � .
Recently, � � 0:9 was measured for 7Li [10]. The gas

was held in a relatively shallow trap, so that continuous
evaporation converted heating into an additional particle
loss, and the extraction of � relied on theoreticallymodeling
this conversion and assuming the 1=T2 scaling of Eq. (2).
In this Letter, we study the stability of the 39K Bose gas

in the jF;mFi ¼ j1; 1i hyperfine ground state, across a
broad Feshbach resonance centered at 402.5 G [25]. We
perform experiments in a deep trap and verify the predicted
recombination-heating rate both at unitarity and for
positive a � � [10,30]. At unitarity we measure L3 /
T�1:7�0:3 and � � 0:3, a value that makes 39K particularly
promising for studies of an equilibrium unitary gas.
Additional measurements at a < 0, away from unitarity,
reveal the importance of four-body processes [20,23],
consistent with previous studies in 133Cs [22], 39K [25],
and 7Li [26].
Our experimental setup is described in Ref. [34]. We

start by preparing a weakly interacting (�=a � 35) thermal
gas in a harmonic optical trap. The trap has a depth of
U � kB 	 30 �K and is nearly isotropic, with the geomet-
ric mean of the trapping frequencies ! ¼ 2�	 185 Hz.
We then tune a close to a Feshbach resonance, by ramping
an external magnetic field over 10 ms. At this point
we have N � 105 atoms at T � 1 �K, corresponding to
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� � 5	 103a0, where a0 is the Bohr radius. At the trap
center n � 3	 1012 cm�3 and n�3 < 0:1, so even at uni-
tarity and assuming � ¼ 1, we still always have �2 
 �3.
We let the cloud evolve for a variable hold time, t, of up to
4 s, and then simultaneously switch off the trap and the
Feshbach field (within �100 �s [35]). Finally, we image
the cloud after 5 ms of time-of-flight expansion.

Figure 1 shows the particle loss and heating in a reso-
nantly interacting gas (�=a ¼ 0). Restricting our measure-
ments to T < 2 �K ensures that evaporative losses and
cooling are negligible.We have taken 19 similar data series,
each at a fixed a, spanning the range �12< �=a < 12.

We first study the relationship between T and N during
the evolution of the cloud. One expects three sources of
heating related to three-body recombination [10,30].
(i) For any a, losses preferentially occur near the center
of the cloud, where the atoms have lower potential energy.
(ii) For a > 0, recombination results in a shallow dimer
with binding energy " ¼ @

2=ðma2Þ, and the third atom
carries away ð2=3Þ" as kinetic energy. In all our experi-
ments " < U, so this atom remains trapped and increases
the energy of the cloud. (iii) At unitarity, three-body re-
combination preferentially involves atoms that also have
lower kinetic energy.

To a good approximation, in our experiments we can
capture all these effects by a simple scaling law:

NT� ¼ const; (3)

with the exponent� varying across the resonance. Ignoring
unitarity effects, � ¼ 3 for a � 0, and � ¼ 3=½1þ
�2=ð9�a2Þ� for a > 0 (see also [30]). In the latter case
� changes as the cloud heats, but in our measurements
this variation is small enough that a constant � ¼
�d½lnðNÞ�=d½lnðTÞ� describes the data well (see inset of
Fig. 2). At unitarity, a universal value of � ¼ 1:8 was
predicted in Ref. [10].

In Fig. 2 we show our measured values of �. For
�=a 
 1 we find agreement with the nonunitary predic-
tion shown by the red dashed line. However, approaching
unitarity we see gradual deviation from this theory. On
resonance, we measure � ¼ 1:94� 0:09, close to the uni-
tary prediction of � ¼ 1:8 (indicated by the red star), and
far from the nonunitary � ¼ 3.
Moving away from unitarity into the a < 0 region (open

symbols in Fig. 2, corresponding to �2000< a=a0 <
�400), � rises further, but does not reach the expected
nonunitary limit. By analyzing the dynamics of the particle
loss, NðtÞ, we find that in this region four-body decay is
also significant (see Fig. 3); in this case our prediction
for � is not applicable. Previously, indirect evidence for
four-body decay in this region was seen in Ref. [25], but
not in Ref. [28], where the initial cloud density was sig-
nificantly lower.
We fit the NðtÞ data by numerically evolving a loss

equation featuring both three- and four-body decay [22],

_N ¼ �L3hn2iN � L4hn3iN; (4)

where L3 and L4 are fitting parameters and we use the
measured TðtÞ to evaluate the thermal density averages. To
obtain purely three- (four-) body fits we fix L4 (L3) to zero.
In Fig. 3 we show NðtÞ for a ¼ �850a0. The model

including both L3 and L4 provides an excellent fit to the
data, with �2 � 1. In comparison, pure four- and three-
body fits have �2 � 5 and 7, respectively. We observe four-
body effects for all our data with �2000< a=a0 <�400.
However, we find that they are relevant only at densities
* 1012 cm�3, which reconciles the observations of
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FIG. 1 (color online). Particle loss and heating in a resonantly
interacting Bose gas (�=a ¼ 0). Each point is an average of 5
measurements and error bars show standard statistical errors.
Solid red lines are fits based on Eqs. (5) and (3).
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FIG. 2 (color online). Heating exponent �, as defined in
Eq. (3). The red dashed line is a result of nonunitary three-body
theory, while the red star indicates the predicted value of 1.8 at
unitarity. Open symbols indicate the region where four-body
decay is significant (see text and Fig 3). Note that � �
5	 103a0 and horizontal error bars reflect its variation during a
measurement sequence at a fixeda. Vertical error bars showfitting
uncertainties. Inset: Log-log plots ofN vs T (scaled to their values
at t ¼ 0) for the data series at �=a � �5:3 (open) and 8.5 (solid).
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Refs. [25,28]. A more detailed study of this region, includ-
ing any four-body resonances [22], is outside the scope of
this Letter.

Fora > 0 the same analysis does not reveal any four-body
decay (see inset of Fig. 3). In this case the pure three-body fit
and the fit including both L3 and L4 are indistinguishable,
with �2 � 1, and give the same L3 (within the 10% fitting
errors), while the pure four-body fit has �2 � 2. This
strongly excludes L4 as a relevant fit parameter. Using a
similar procedure, we have also checked that for both posi-
tive and negative a we do not detect any five-body decay.

We henceforth focus on the three-body decay dynamics
at unitarity, using the a > 0 nonunitary regime for com-
parison. Invoking Eq. (3), in both regimes the particle loss
should be described by:

_N ¼ �AN�; (5)

where A and � are constants. Here, � absorbs all the N and
T dependence of L3 and hn2i. Integration gives a fitting

function NðtÞ ¼ ½Að�� 1Þtþ Nð0Þ1���1=ð1��Þ. For a � �
we expect � ¼ 3þ 3=�, whereas at unitarity L3 / 1=T2

implies � ¼ 3þ 5=�. To test this hypothesis in an
unbiased way, we analyze our data using � as a free
parameter.

Note that here we invoke Eq. (3) merely to anticipate the
validity of Eq. (5) and the � values; experimentally, our
analysis ofNðtÞ and � is decoupled from the measurements
of TðtÞ and�. The validity of our approach is seen in Fig. 1,
where the fit of NðtÞ is based on Eq. (5). The fit of TðtÞ is
then obtained by inserting the fittedNðtÞ and� into Eq. (3).

Our fitted values of � are summarized in Fig. 4. We see a
crossover from nonunitary to unitary behavior as the

resonance is approached, confirming the appearance of a
temperature-dependent L3. Now combining our measure-
ments of � and �, at unitarity we get L3 / T�1:7�0:3, in
agreement with the expected 1=T2 scaling.
Next, using the fitted A and �, for each data series at a

particular a, and for any evolution time t, we extract

L3ðtÞ ¼ 3
ffiffiffi
3

p �
2�kBTðtÞ
m!2

�
3
NðtÞ��3A: (6)

Combining all our data series, we reconstruct L3ða; TÞ.
In Fig. 5 (main panel) we show L3 at a fixed T ¼

1:1 �K, scaled to the theoretical upper bound LM
3 ðTÞ,
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FIG. 3 (color online). Three- vs four-body decay for a < 0
(away from unitarity). N decay at a ¼ �850a0 is fitted to a
model including both three- and four-body losses (green solid
line), as well as to pure three- and four-body models (red dashed
and black dot-dashed line, respectively). Inset: For comparison,
at a ¼ 700a0, the solid green and the dashed red lines are
indistinguishable, showing that four-body decay does not play
a detectable role.
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FIG. 4 (color online). Particle-loss exponent �, as defined in
Eq. (5). The red dashed line shows the nonunitary theory, � ¼
3þ 3=�, assuming nonunitary � values. The red star shows the
unitary prediction, � ¼ 3þ 5=�, corresponding to L3 / 1=T2

and the measured �. Error bars are analogous to those in Fig. 2.
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FIG. 5 (color online). Three-body loss coefficient. Main panel:
ðL3=L

M
3 Þ�1=4 (see text) at T ¼ 1:1 �K. Horizontal green line

marks the theoretical upper bound on L3, while the red dashed
line is a guide to the eye showing the L3 / a4 nonunitary scaling.
At unitarity, L3=L

M
3 � 0:27. Inset: L3 at 1:1 �K (open symbols)

and 1:7 �K (solid symbols). The expected ratio between the two
unitary plateaux is indicated by the green vertical bar.
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obtained by setting � ¼ 1 in Eq. (2). Plotting ðL3=L
M
3 Þ�1=4

versus �=a clearly reveals two key effects. First, for
�=a * 3, we see the nonunitary scaling L3 / a4 [37].
Second, close to the resonance, L3 saturates at � 0:27LM

3 .

In the inset of Fig. 5 we focus on the region close to the
resonance and compare L3 for two different temperatures,
T ¼ 1:1 �K and 1:7 �K. Away from the resonance,
L3 does not show any T dependence. At unitarity, the
ratio of the two saturated L3 values is close to the expected
1=T2 scaling.

Finally, to refine our estimate of � , we fix � ¼ 3þ 5=�
(i.e., L3 / 1=T2) and reanalyze the three data series taken
closest to the resonance, for which j�=aj< 0:6 at all times.
This gives us a combined estimate of � ¼ 0:29� 0:03,
while the systematic uncertainty in � due to our
absolute atom-number calibration [38,39] is about 30%.
Writing L3¼�3=T

2, this corresponds to �3 � 4:5	
10�23 ð�KÞ2 cm6 s�1. In the context of Efimov physics,
� ¼ 1� e�4	 [10], where	 is the Efimov width parameter
[40]. We deduce 	 ¼ 0:09� 0:04 (see also [25]).

In conclusion, we have fully characterized the stability
of a 39K gas at and near unitarity. We have experimentally
verified the theoretically predicted general scaling laws
characterizing particle loss and heating in the unitary
regime, confirmed the relevance of four-body decay on
the negative side of the Feshbach resonance, and measured
the species-specific unitarity-limited three-body loss coef-
ficient, L3 / 1=T2. The unitary value of L3, 3 times lower
than the universal theoretical upper bound, makes 39K a
promising candidate for experimental studies of many-
body physics in a unitary Bose gas.
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Note added.—Recently, a study of a degenerate unitary
85Rb gas was reported [41].
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