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We have observed the Bose-Einstein condensation of an atomic gas in the (quasi)uniform three-

dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution

and the anisotropic time-of-flight expansion of the condensate. The critical temperature agrees with the

theoretical prediction for a uniform Bose gas. The momentum distribution of a noncondensed quantum-

degenerate gas is also clearly distinct from the conventional case of a harmonically trapped sample and

close to the expected distribution in a uniform system. We confirm the coherence of our condensate in a

matter-wave interference experiment. Our experiments open many new possibilities for fundamental

studies of many-body physics.
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Ultracold Bose and Fermi atomic gases are widely used
as test beds of fundamental many-body physics [1].
Experimental tools such as Feshbach interaction reso-
nances [2], optical lattices [3], and synthetic gauge fields
[4] offer great flexibility for studies of outstanding prob-
lems arising in many areas, most commonly in condensed-
matter physics. However, an important difference between
‘‘conventional’’ many-body systems and ultracold gases is
that the former are usually spatially uniform whereas the
latter are traditionally produced in harmonic traps with no
translational symmetries.

Various methods have been developed to overcome this
problem and extract uniform-system properties from a
harmonically trapped sample [5–13], relying on the local
density approximation [5–11] or selective probing of a
small central portion of the cloud [11–13]. Sometimes
harmonic trapping can even be advantageous, allowing
simultaneous mapping of uniform-system properties at
different (local) particle densities. On the other hand, in
many important situations local approaches are inherently
limiting, for example, for studies of critical behavior with
diverging correlation lengths. The possibility to directly
study a spatially uniform quantum-degenerate gas has thus
remained an important experimental challenge. So far,
atomic Bose-Einstein condensates (BECs) have been
loaded into elongated [14] or toroidal [15] traps that are
uniform along only one direction while still harmonic
along the other two directions.

Here, we demonstrate the Bose-Einstein condensation of
an atomic gas in a three-dimensional (3D) (quasi)uniform
potential. We load an optical box trap depicted in Fig. 1(a)
with 87Rb atoms precooled in a harmonic trap and achieve
condensation by evaporative cooling in the box potential.
Below a critical temperature Tc � 90 nK, condensation is
seen in the emergence of a bimodal momentum distribu-
tion and the anisotropic time-of-flight (TOF) expansion
of the BEC. We characterize the flatness of our box poten-
tial and show that both the momentum distribution of the

non-condensed component and the thermodynamics of
condensation are close to the theoretical expectations for
a uniform system, while being clearly distinct from the
conventional case of a harmonically trapped gas. We also
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FIG. 1 (color online). Preparing a quasiuniform Bose gas.
(a) The optical-box trap is formed by one hollow tube beam and
two sheet beams creating a repulsive potential for the atoms. The
atomic cloud is confined to the dark (red) cylindrical region.
Gravitational force is canceled by a magnetic field gradient B0.
(b) The three trapping beams are created by reflecting a single
Gaussian beam off a phase-imprinting spatial light modulator.
(c) The atoms are loaded into the box trap after precooling in a
harmonic trap. (d) In situ images of the cloud just before (left) and
after (right) loading into the box and corresponding line-density
profiles along x (bottom plots) and z (side plots) directions. OD
stands for optical density; the line densities along x (z) are
obtained by integrating the images along z (x). The blue dashed
lines in the left panel are fits to the thermal component of the
harmonically trapped gas. Thegreendashed lines in the right panel
are fits based on the expected profiles for a uniform-density gas.
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demonstrate a simple experimental configuration for
trapped-atom interferometry and use it to confirm the
coherence of our quasi-uniform BEC.

Our setup for producing 87Rb condensates in a harmonic
potential is described elsewhere [16]; we create BECs in
the jF;mFi ¼ j2; 2i hyperfine ground state using a hybrid
magnetic-optical trap [17]. The dark optical trap [18,19]
that is central to this work is formed by three 532 nm laser
beams—a ‘‘tube’’ beam propagating along the x axis and
two ‘‘sheet’’ beams propagating along the y axis. The
green laser beams create a repulsive potential for the atoms
and confine them to the cylindrical dark region depicted in
red in Fig. 1(a). To create a uniform potential, we addi-
tionally cancel the gravitational force on the atoms at a
10�4 level, using a magnetic field gradient [16].

As outlined in Fig. 1(b), all three trapping beams are
created by reflecting a single Gaussian beam off a phase-
imprinting spatial light modulator with three superposed
phase patterns [20]. The tube beam is an optical vortex
created by imprinting a 24� phase winding on the incom-
ing beam [21], the sheet beams are created using
cylindrical-lens phase patterns, and the three outgoing
beams are deflected in different directions using phase
gradients. With a total laser power of P0 � 700 mW we
achieve a trap depth of V0 � kB � 2 �K.

We evaporatively cool the gas in the harmonic trap down
to T � 120 nK, when the cloud size is similar to the size of
our optical box [see Fig. 1(c)] and kBT � V0. At this point
the gas is partially condensed, but the BEC is lost during
the transfer into the box trap, which is not perfectly adia-
batic. Over 1 s, we turn on the green light and then turn off
the harmonic trapping, capturing >80% of the atoms.

In Fig. 1(d) we show in-trap absorption images of the
cloud just before and just after the transfer into the box trap.
The images are taken along the y direction, using high-
intensity imaging [8,9,22] with a saturation parameter
I=Isat � 150. For each image, we show the line-density
profiles along x and z, obtained by integrating the image
along one direction. If a cylindrical box of length L and
radius R is filled perfectly uniformly, the density distribu-
tion along x is simply a top-hat function ofwidthL. Along z,
the line-of-sight integration results in ‘‘circular’’ column-

and line-density profiles,/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðz=RÞ2p

. In the experimen-
tal images, the edges of the cloud are rounded off for two
reasons, both related to the diffraction limit of our optical
setup. First, the 1=e2 waist of the 532 nm trapping beams is
diffraction limited to� 3 �m, which leads to some round-
ing off of the potential bottom near the edges of the box.
Second, our imaging resolution is diffraction limited to
� 5 �m, making the cloud edges appear more smeared
out than they actually are. The green dashed lines in the
right panel of Fig. 1(d) are fits to the data based on a
perfectly uniform distribution convolved only with the
imaging point-spread function. The fits describe the data
well and giveL ¼ 63� 2 �m andR ¼ 15� 1 �m. These

values are consistent with the calculated separation of the
green walls, reduced by the diffraction-limited wall
thickness.
After the transfer into the box trap, the cloud contains

N � 6� 105 atoms at T � 130 nK. From this point, we
cool the gas to below Tc by forced evaporative cooling in
the box trap. We lower the trapping power P in an expo-
nential ramp with a 0.5 s time constant, thus proportionally
reducing the power in all three trapping beams. Initially,
the trap depth is much larger than kBT, so significant
cooling occurs only for P & 0:5P0. At the end of the
evaporation, we always raise (over 0.5 s) the trapping
power back to P0 so that the cloud cooled to different
temperatures is always confined in the same potential.
Figure 2 qualitatively illustrates the effects of evapora-

tion and condensation in the box trap. We show images of
the cloud both in situ and after 50 ms of TOF expansion
from the trap.Whereas in a harmonic trap cooling results in
simultaneous real-space and momentum-space condensa-
tion, here it has no dramatic effects on the in-trap atomic
distribution. The density is gradually reduced by evapora-
tion, but the shape of the cloud does not reveal condensa-
tion. On the other hand, in momentum space (i.e., in TOF)
the effects of cooling are obvious and the signatures of
condensation are qualitatively the same as for a harmoni-
cally trapped gas—the momentum distribution becomes
bimodal and the BEC expands anisotropically, with its
aspect ratio inverting in TOF.
We now turn to a quantitative analysis of our degenerate

quasiuniform Bose gas. We assess the flatness of our trap-
ping potential and contrast the thermodynamics of con-
densation in our system with the case of a harmonically
trapped gas.
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FIG. 2 (color online). Evaporation and Bose-Einstein conden-
sation in the optical-box trap. Cooling is achieved by lowering
the trapping laser power P. We show absorption images taken
after 50 ms of TOF and in situ [insets, with same color scale as in
Fig. 1(d)]. The bottom panels show cuts through the momentum
distributions recorded in TOF. In contrast to the case of a
harmonic trap, no dramatic effects of cooling are observed
in situ. However, BEC is clearly seen in the bimodality of the
momentum distribution and the anisotropic expansion.
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We first analyze the momentum distribution in a non-
condensed gas, at T � 110 nK. In Fig. 3(a), we plot the
line density measured in TOF, ~nðzÞ, obtained by integrating
an image along x. At this point, the gas is sufficiently
degenerate to show the effects of Bose statistics. In a
trapped degenerate gas, the spatial and momentum degrees
of freedom are in general not separable, and consequently
~nðzÞ also contains information about the functional form of
the trap.

For simplicity, let us consider an isotropic 3D trapping
potential of the form VðrÞ / rn; for a fixed n value, poten-
tial anisotropy does not affect the scalings discussed below.
The line-density distribution after long TOF then has the
form

~nðzÞ ¼
ffiffiffiffiffiffiffiffi
�m

2t2

s �
T

��

�
�þ1=2

g�ðe�ð��"ðzÞÞÞ; (1)

where g� is the polylog function of order � ¼ 1þ 3=n.
Here, � ¼ 1=ðkBTÞ, m is the atom mass, t is the expansion
time, � is the chemical potential, "ðzÞ ¼ mz2=ð2t2Þ, and
the constant �� absorbs various factors such as the imaging
magnification and cross section. Small corrections due to
the initial cloud size are accounted for by convolving g�
with the in-trap density distribution.

For a harmonic trap n ¼ 2 and � ¼ 5=2, whereas for a
uniform gas n ! 1 and � ¼ 1. The measured ~n is fitted
very well by the g1 function, with the reduced �

2 � 1. The
g5=2 fit is comparatively poor: �2 � 7 and the systematic

patterns in the fitting residuals �~n ¼ ~n� ~nfit clearly show
that this is fundamentally a wrong functional form.
Qualitatively, the measured momentum distribution is
more ‘‘peaky’’ than that of a harmonically trapped degen-
erate gas.

As shown in the inset of Fig. 3(a), the measured ~n can be
fitted well using � in the range of 1–1.7, whereas higher
values can be clearly excluded. Note, however, that in these
fits we used ��, �, and T as free parameters. Allowing ��
to vary gives the fitting function an unphysical freedom and
overestimates the range of suitable � values. Crucially,
only for the correct � is the best-fit value of �� a
temperature-independent constant. We use this fact to
accurately determine the leading-order correction to the
flatness of our trapping potential.
In Fig. 3(b), we analyze the T dependence of the fitted

�� values. (As above, T is varied by forced evaporation in
the box trap, and at the end of cooling the trap is always
restored to its full depth.) Here, we exclude from the fits the
central 180 �m wide region of the cloud, which is larger
than the largest observed BECs. The drift of the fitted ��
with T is described well by a constant slope S� ¼
d½logð��Þ�=d½logðTÞ�, and we see that S� varies monotoni-
cally with �. Physically, if the � used for fitting is too high,
as the gas cools the actual momentum distribution narrows
faster than g�. The fit then increasingly underestimates T
and compensates by decreasing ��. Conversely, if � is too
low, the fitted �� increases as the gas is cooled. Note that
for each � the fitted �� is plotted against T extracted from
the same fit, and we see that the fitted temperatures also
show the expected systematic drifts.
From the condition S� ¼ 0, we get � ¼ 1:23� 0:03

and conclude that the leading-order correction to the flat-
ness of our box potential is / r13�2. While we can distin-
guish an r13 potential from a perfectly flat one, we expect
this distinction to be irrelevant for most many-body
studies.
We now fix � ¼ 1:23 and study the evolution of the

BEC atom number N0 with T. In contrast to the harmonic-
trap case, where the Thomas-Fermi shape of the BEC
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FIG. 3 (color online). Momentum and particle-number distribution in a quasiuniform degenerate Bose gas. (a) TOF profile ~nðzÞ of a
noncondensed cloud (red) and g� fits to the data, with � ¼ 1 (green) and 5=2 (blue). We also show the fitting residuals �~n. Inset:
fitting �2 versus �. (b) Flatness of the box potential: the condition S ¼ d½logð�Þ�=d½logðTÞ� ¼ 0 (see text) gives � ¼ 1:23� 0:03,
corresponding to an effective r13�2 potential. (c) The number of condensed (N0) and thermal (N0) atoms versus T. The critical
temperature Tc ¼ 92� 3 nK is in agreement with the prediction for a uniform Bose gas. Below Tc, a power-law fit (solid red line)
gives N0 / T1:73�0:06.
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remains parabolic in TOF, the shape of the BEC expanding
from our uniform cylindrical trap does not maintain a
simple functional form. Hence, rather than fitting the
BEC profile to any specific shape, we fit only the thermal
component and simply count the excess atoms not
accounted for by the thermal fit.

In Fig. 3(c) we plot N0 versus T and determine Tc ¼
92� 3 nK. From the measured atom number and box
volume, we get a consistent theoretical value for a uniform
Bose gas, T0

c ¼ 98� 10 nK. This calculation includes
small finite-size and interaction shifts of T0

c [23–25], of
about 6% and 1%, respectively; the error includes the 10%
uncertainty in our absolute atom-number calibration,
obtained by measuring Tc in a harmonic trap [26].

In Fig. 3(c) we also plot the thermal atom number N0
versus T. Below Tc, we fit the variation of N

0 with a power
lawN0 / T� and get � ¼ 1:73� 0:06. This agrees with the
expected � ¼ �þ 1=2. For a saturated thermal compo-

nent in a perfectly uniform system N0 / T3=2, whereas in a
harmonic trapN0 / T3. The thermodynamics of our gas are
therefore very close to the textbook case of a uniform
system and very different from the case of a harmonically
trapped sample.

Below 40 nK our temperature fits are not accurate,
but we can cool the gas further and produce a quasipure
BEC with >105 atoms. The 1=e lifetime of the BEC is
10 s, limited by the background pressure in our vacuum
chamber [16].

Finally, we verify the coherence of our uniform BEC in
an interference experiment, using a two-trap configuration
shown in Fig. 4(a). We add a third sheet laser beam to
simultaneously condense atoms in a small ‘‘satellite’’ trap,
whereas the main box trap is essentially the same as in the
rest of the Letter. Here, we cool the gas to the regime where
the BEC is quasi-pure (T < 30 nK).

In Fig. 4(b) we show the interference fringes emerging
as the two clouds overlap in TOF. We observe interference
contrasts of up to � 50%, limited by our imaging resolu-
tion and the fact that the two interfering clouds do not have
the same atom number. Note that the interference pattern is
different from the parallel fringes of constant spacing
commonly observed in a symmetric expansion of two
BECs [27]. Qualitatively, along the x axis the main cloud
expands very slowly and is still in the near-field regime,
while the small BEC expands rapidly and is in the far-field
regime. This leads to a quadratic variation of the relative
phase along x and the reduction of the fringe period from
right to left in Fig. 4(b). We reproduce a similar pattern in a
numerical simulation of the Gross-Pitaevskii equation,
shown in Fig. 4(c).

In conclusion, we have observed and characterized the
Bose-Einstein condensation of an atomic gas in an essen-
tially uniform potential.We expect our experiments to open
upmany new research possibilities. The box trap eliminates
the need to rely on the local density approximation, which

could be particularly important for studies of critical behav-
ior with diverging correlations near phase transitions
[28,29]. Moreover, for the same particle number, the qua-
siuniformBEC has a significantly lower density (in our case
�2� 1012 cm�3) than a harmonically trapped one. This
reduces the importance of three-body recombination com-
pared to that of two-body interactions, and near a Feshbach
resonance it may facilitate equilibrium studies of a strongly
interacting, possibly unitary Bose gas [30–32]. Dark optical
traps loaded with low density BECs also hold promise for
trapped-atom interferometry with very long decoherence
times. Here, we chose an elongated box shape for qualita-
tive detection of the BEC through anisotropic expansion,
but with our light-shapingmethods traps of almost arbitrary
geometry could be created [33]. Our methods are also
suitable for studies of degenerate Fermi gases and low-
dimensional systems and are compatible with the imple-
mentation of 3D optical lattices.
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