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We perform high-precision measurements of the condensation temperature of a harmonically trapped

atomic Bose gas with widely tunable interactions. For weak interactions we observe a negative shift of the

critical temperature in excellent agreement with mean-field theory. However for sufficiently strong

interactions we clearly observe an additional positive shift, characteristic of beyond-mean-field critical

correlations. We also discuss nonequilibrium effects on the apparent critical temperature for both very

weak and very strong interactions.
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The effect of interparticle interactions on the Bose-
Einstein condensation temperature of a dilute gas has
been theoretically debated for more than 50 years, since
the pioneering work of Lee and Yang [1]. In a uniform
system there is no interaction shift of the critical tempera-
ture Tc at the level of mean-field theory. However, consid-
eration of the correlations between particles which develop
near the critical point leads to the conclusion that repulsive
interactions enhance condensation, i.e., shift Tc above the
ideal gas value T0

c [2–6].
Ultracold atomic gases offer an excellent testbed for

fundamental theories of many-body physics [7,8].
However, in these systems the problem of the interaction
shift of Tc is even more complex because they are har-
monically confined. In this case, at least for weak
interactions, the Tc shift is dominated by an opposing
mean-field effect, which reduces the critical temperature
[9]. Within experimental precision, previous measure-
ments [10–12] were consistent with the mean-field theory
and could not discern the effects of critical correlations.

In this Letter, we report on high-precision measurements
of the Tc shift in a potassium (39K) gas with tunable
interactions [13,14]. We employ a Feshbach resonance
[15] to extend the previously explored range of interaction
strengths and eliminate several key sources of statistical
and systematic errors. This allows us to clearly reveal the
long-sought beyond-mean-field effects on the critical tem-
perature. We also examine the stringent requirements for
equilibrium Tc measurements, which are violated in the
regimes of either very weak or very strong interactions.
In nonequilibrium gases we observe evidence for ‘‘super-
heated’’ condensates which survive at an apparent tem-
perature above the equilibrium Tc, suggesting that strong
dissipation can stabilize the coherent condensed state.

Historically, most theoretical work focused on a uniform
gas, and for several decades there was no consensus on the
functional form, or even on the sign of the Tc shift (see,
e.g., [4,6]). It is now generally believed that the shift is
positive and to leading order given by [4,5]

�Tc

T0
c

� 1:3an1=3 � 1:8
a

�0

; (1)

where �Tc ¼ Tc � T0
c , a > 0 is the s-wave scattering

length, n the particle density, and �0 the thermal wave-
length at T0

c . The positive �Tc implies condensation at a
phase space density below the ideal gas critical value of
n�3 ¼ �ð3=2Þ � 2:612 (where � is the Riemann function).
For a harmonically trapped gas, Tc is defined for a given

atom number N, rather than for a given density n. For an

ideal gas, kBT
0
c ¼ @ �!½N=�ð3Þ�1=3, where �! is the geomet-

ric mean of the trapping frequencies and �ð3Þ � 1:202.
This corresponds to a phase space density in the trap center
equal to the uniform system critical value, nð0Þ�3 ¼
�ð3=2Þ. The interaction shift of the critical point can be
expressed either as �TcðNÞ (for comparison with theoreti-
cal literature) or as �NcðTÞ (for easier visualization, as in
Figs. 1 and 2).
The two opposing effects of repulsive interactions on the

critical point of a trapped gas are illustrated in Fig. 1, where
we sketch the density distribution at the condensation point
for an ideal (dotted blue line) and an interacting (solid red
line) gas at the same temperature. In the spirit of the local
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FIG. 1 (color online). Opposing effects of interactions on the
critical point of a Bose gas in a harmonic potential VðrÞ.
Compared to an ideal gas (dotted blue line) with the same Tc,
repulsive interactions reduce the critical density, but also
broaden the density distribution (solid red line). Mean-field
theory (dashed line) captures only the latter effect, and predicts
an increase of the critical atom number Nc at fixed temperature
T, equivalent to a decrease of Tc at fixed N.
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density approximation, the critical density should be re-
duced by repulsive interactions. However, interactions also
broaden the density distribution. For weak interactions the
latter effect is dominant, making the overall interaction
shift �NcðTÞ positive, or equivalently �TcðNÞ negative.

The negative Tc shift due to the broadening of the
density distribution in a harmonically trapped gas can be
calculated using mean-field (MF) theory, which neglects
the reduction of the critical phase space density implied by
Eq. (1) (see dashed line in Fig. 1). This approach gives [9]

�Tc

T0
c

� �3:426
a

�0

: (2)

The dominance of the negative MF shift of Tc over the
positive beyond-MF one goes beyond the difference in
numerical prefactors in Eqs. (2) and (1). At the condensa-
tion point, in a nonuniform system only the central region
of the cloud is close to criticality, which reduces the net
effect of critical correlations so that they are expected to
affect Tc only at a higher order in a=�0. The MF result of
Eq. (2) should therefore be exact at first order in a=�0.
Despite several attempts to theoretically combine the ef-
fects of MF repulsion and beyond-MF correlations on Tc

for a harmonically trapped gas [16–20], no consensus has
been reached beyond the expectation that the additional
beyond-MF shift should be positive.

Previous measurements [10–12], consistent with Eq. (2),
were performed for a=�0 ranging from 0.007 [12] to 0.024
[11]. We explore the range 0:001< a=�0 < 0:06, using the
402.5 G Feshbach resonance in the jF;mFi ¼ j1; 1i state of
39K [21]. As in [14,22], we produce 39K condensates in a
crossed optical dipole trap which provides a close to iso-
tropic trapping potential, with �!=2� ¼ 75–85 Hz for the
measurements reported here.

To measure the critical point we prepare a partially
condensed cloud, fix the optical trap depth, and let the
atom number decay towards Nc through inelastic pro-
cesses; meanwhile, elastic collisions redistribute particles
between condensed and thermal components, and the
temperature remains essentially constant [23]. We prepare
clouds with various condensed fractions at a ¼ 135a0,
where a0 is the Bohr radius. We then adjust a to the desired
value by ramping the Feshbach field, and wait for an
a-dependent hold time thold before releasing the gas from
the trap and measuring its momentum distribution through
absorption imaging after 19 ms of time-of-flight (TOF). In
the last part of the Letter we discuss the strict requirements
on the relationship between thold, the elastic scattering rate
�el, and the relevant atom-number decay time � for the
measurements of Tc to faithfully reflect equilibrium prop-
erties of the gas. For now we focus on the measurements
which we trust to be in equilibrium.

In addition to extending the a=�0 range, the Feshbach
resonance provides two experimental advantages essential
for the precision and accuracy of our measurements:

(i) For each measurement series at a given a and �0, we
concurrently take a reference measurement with a different

a, same �! and very similar N, hence very similar �0.
Specifically, for the reference point we choose a small a
such that a=�0 � 0:005. We thus directly access the small
Tc shift due to the difference in a=�0, and essentially
eliminate all a-independent systematic errors that usually
affect absolute measurements of TcðN; �!; aÞ. These in-
clude uncertainties in the absolute calibration of N and
�!, as well as the additional Tc shifts due to finite-size
effects [7] and the small trap anharmonicity [14].
(ii) We home in on the critical point by turning off the

interactions during TOF. To do this we quickly (in& 2 ms)
ramp the Feshbach field to 350 G immediately after the
release of the gas from the trap. This minimizes the ex-
pansion of small condensates and allows us to reliably
detect condensed fractions as small as �10�3 (see Fig. 2).
Figure 2 illustrates our differential measurement. Here

a ¼ 274a0, �0 � 104a0, and a ¼ 56a0 for the reference
series. If the two series had identical Nc values, we could
directly read off the differential �TcðNÞ. To correct for
the small (few %) difference in Nc we apply the ideal

gas scaling, Tc / N1=3, to the reference series. The
second-order error in �Tc due to the small (< 2%) Tc shift
at a=�0 � 0:005 is much smaller than our statistical error
bars. For visual clarity, in Fig. 2 we instead scale to the
same temperature and display �NcðTÞ.
In Figs. 2(b) and 2(c) we show the relationship between

the condensed (N0) and thermal (N0) atom number near the
critical point [24]. The rise of N0 in Fig. 2(b) is not simply
vertical because the thermal component in a partially con-
densed gas is not saturated at Nc [22]; one can also see that
this effect is more pronounced at higher a. It is therefore
essential to carefully extrapolate N0 to the N0 ¼ 0 limit in
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FIG. 2 (color online). Determination of the critical point and
differential interaction shift. (a) An absorption image of a cloud
with 450 000 atoms and a 0.14% condensed fraction. We show an
azimuthally averaged cut through the column density for illus-
trative purposes, while the full 2D distribution is used for fitting.
The gas was prepared at a large scattering length, a ¼ 274a0, but
the interactions were turned off in TOF. (b) Condensed (N0)
versus thermal (N0) atom number for two concurrently taken
series with a ¼ 56a0 (blue circles) and a ¼ 274a0 (black
squares). Note that all points correspond to condensed fractions
below 2%. The data are scaled to the same temperature (T ¼
240 nK) and show the shift of the critical point in the form
�NcðTÞ. The solid point corresponds to the image shown in (a).
Solid lines show the extrapolation to N0 ¼ 0, necessary to

accurately determine Nc. (c) N
0 is plotted versus N2=5

0 for the

same data as in (b), showing more clearly the extrapolation
procedure.
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order to accurately determine Nc. We extrapolate using

N0 ¼NcþS0N
2=5
0 , with the nonsaturation slope S0ðT; �!;aÞ

calculated with no free parameters following [22].
In Fig. 3 we summarize our equilibrium measurements

of the interaction shift �Tc=T
0
c . We took data with N �

ð2–8Þ � 105 (corresponding to T0
c � 180–330 nK) in order

to verify that our results depend only on the interaction
parameter a=�0. The MF result of Eq. (2) fits the data very
well for a=�0 & 0:01. For larger a=�0 we observe a
clear deviation from this prediction. All data points are
fitted well by a second-order polynomial, �Tc=T

0
c ¼

b1ða=�0Þ þ b2ða=�0Þ2, with b1 ¼ �3:5� 0:3 and b2 ¼
46� 5 [25]. Logarithmic corrections to this functional
form are predicted (see, e.g., [18]), but are not discernible
within our error bars.

The value of b1 is in excellent agreement with the MF
prediction of�3:426 [9]. The value of b2 strongly excludes
zero, and its sign is consistent with the expected effect of
beyond-MF correlations. These measurements provide the
first observation of beyond-MF effects on the transition
temperature of a harmonically trapped gas.

To conclude this part of the Letter, we assess our system-
atic errors. In general, interactions increase the kinetic
energy of thermal atoms during TOF, resulting in an
a-dependent error in T which does not cancel out in our
differential measurements. This error is minimized by fit-
ting the high-energy wings of the thermal distribution (ex-
cluding the central thermal radius) [26]. We also turn the
interactions off at the beginning of TOF, but the reduction
of a is gradual over � 2 ms. We measure the difference
between (apparent) T with interactions ‘‘on’’ and ‘‘off’’
during TOF to be approximately linear in a=�0, and about
4% for a ¼ 400a0 and �0 � 104a0. By varying the time at
which we turn off a, we estimate our residual error to be
1%–2% at a=�0 ¼ 0:04. This estimate is supported by
numerical simulations. Additionally, interactions modify
the in-trap momentum distribution. This reduces the

apparent T because the positive chemical potential prefer-
entially enhances population of low-energy states. We nu-
merically estimate this effect to also be approximately
linear in a=�0, and about �2% at a=�0 ¼ 0:04.
Fortuitously, the two effects partially cancel, resulting in
a net error in �Tc=T

0
c of at most �1% at a=�0 ¼ 0:04.

In the rest of the Letter we discuss the equilibrium
conditions required for our measurements, and the non-
equilibrium effects revealed when they are violated.
In general, a system with continuous dissipation can

only be ‘‘close to’’ thermodynamic equilibrium. For an
atomic gas, the proximity to equilibrium depends on the
dimensionless parameter �el�, which measures the relative
rates of elastic and inelastic processes. In practice the �el

required for equilibriummeasurements also depends on the
measurement precision.WemeasureNc to about 1%, so we
require that the gas continuously (re-)equilibrates on a time
scale � corresponding to only 1% atom-loss. We thus
require about 100 times higher �el than one would naively
conclude by taking the 1=e lifetime of the cloud as the
relevant time scale. Equilibration is usually considered to
take about 3 collisions per particle [27]; for all measure-
ments shown in Fig. 3 we made sure that �el� > 5. All
of our data also satisfy the condition thold > �> 1= �!,
necessary for global equilibrium to be established.
An interesting question in its own right is what happens

if we violate these stringent equilibrium criteria. In
Fig. 4(a) we show measurements with N � 4� 105 atoms
(�0 � 104a0), extending beyond the equilibrium region
shown in Fig. 3. We still show only measurements
satisfying thold > �> 1= �! and �elthold > 5, so that there
is nominally enough time for global equilibrium to be
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FIG. 3 (color online). Interaction shift of Tc. Data points were
taken with N � 2� 105 (blue circles), 4� 105 (black squares),
and 8� 105 (red triangles) atoms. The dashed line is the mean-
field result �Tc=T

0
c ¼ �3:426a=�0. The solid line shows a

second-order polynomial fit to the data (see text). Vertical error
bars show statistical errors. Horizontal error bars reflect the 0.1 G
uncertainty in the position of the Feshbach resonance.
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FIG. 4 (color online). Nonequilibrium effects. (a) �Tc=T
0
c for

N � 4� 105 atoms is determined following the procedure
which assumes equilibrium. At both low and high a the apparent
Tc deviates from the equilibrium curve. (b) Equilibrium criteria
(see text): �el� (solid squares) is the number of elastic collisions
per particle during 1% atom loss; �el= �! ¼ 1 (open circles)
marks the onset of the hydrodynamic regime.
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established. However if �el� is too small, the elastic colli-
sions cannot ‘‘keep up’’ with the continuously present
dissipation. The resulting nonequilibrium effects can thus
not be eliminated by simply extending thold, but are an
intrinsic property of the system. In Fig. 4(b) we plot �el�,
based on calculated �el [28] and � measured near the
critical point. Individually, �el � 0:7–1000 s�1 and � �
2 ms–1 s vary vastly as a function of a (�el increasing and
� decreasing), but the breakdown of equilibrium occurs at
very similar values of �el� in the low- and high-a limit.

Nonequilibrium phenomena necessarily depend on addi-
tional factors such as the initial conditions, so we do not
expect our quantitative results to be universal and discuss
only qualitative trends.

In the small-a limit we observe a smooth rapid rise of the
apparent Tc above the equilibrium curve (and hence above
T0
c for a ! 0). We can qualitatively understand this effect

within a simple picture. In this regime, losses are most
likely dominated by one-body processes which equally
affect N0 and N0. The net effect of equilibrating elastic
collisions would therefore be to transfer atoms from the
condensate to the thermal cloud. However the dissipation
rate is too high compared to �el, and soN0 remains nonzero
even after the total atom number drops below the equilib-
rium critical value Nc (i.e. the measured Tc is above the
equilibrium value). Note that strictly speaking T is not
defined out of equilibrium, but the absolute value of the
observed effect is sufficiently small that an equilibrium
distribution function fits the data very well and provides a
good measure of the energy content of the cloud.

Our measurements in the large-a limit suggest that the
initial breakdown of equilibrium again results in conden-
sates surviving above the equilibrium Tc. However the
physics in this regime is much richer, with several poten-
tially competing effects requiring further investigation.
For example, three-body decay affects N0 and N0
differently, the thermal component is far from saturation
[22], and the gas also enters the hydrodynamic regime,
�el= �!> 1 [see Fig. 4(b)].

In conclusion, we have performed high-precision studies
of the effects of interactions on Bose-Einstein condensa-
tion of a trapped atomic gas. In the regime where equilib-
rium measurements are possible, our most important
observation is the clear deviation from mean-field behavior
for sufficiently strong interactions. The additional positive
shift of the critical temperature is a clear signature of the
condensation-enhancing effect of critical fluctuations.
These measurements should provide motivation and guid-
ance for further theoretical studies of this difficult problem.
We also studied nonequilibrium condensation phenomena,
for both very weak and very strong interactions. Further
study of these effects should prove useful for understand-
ing condensation in intrinsically out-of-equilibrium sys-
tems, such as polariton gases.
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