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Spectroscopic method to measure the superfluid fraction of an ultracold atomic gas
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We perform detailed analytical and numerical studies of a recently proposed method for a spectroscopic
measurement of the superfluid fraction of an ultracold atomic gas [N. R. Cooper and Z. Hadzibabic, Phys.
Rev. Lett. 104, 030401 (2010)]. Previous theoretical work is extended by explicitly including the effects of
nonzero temperature and interactions, and assessing the quantitative accuracy of the proposed measurement
for a one-component Bose gas. We show that for suitably chosen experimental parameters the method yields
an experimentally detectable signal and a sufficiently accurate measurement. This is illustrated by explicitly
considering two key examples: First, for a weakly interacting three-dimensional Bose gas it reproduces the
expected result that below the critical temperature the superfluid fraction closely follows the condensate fraction.
Second, it allows a clear quantitative differentiation of the superfluid and the condensate density in a strongly
interacting Bose gas.
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I. INTRODUCTION

Ultracold atomic gases provide a highly controllable exper-
imental setting for studies of many-body quantum phenomena
such as Bose-Einstein condensation [1] and superfluidity [2–4]
(for a review see Ref. [5]). The physical phenomena studied in
these systems are often analogous to those occurring in other
many-body systems, solid-state materials and liquid helium
in particular. Moreover, the flexibility in experimentally
designing the geometry and interactions in atomic gases
offers the possibility to experimentally access physical regimes
which are of theoretical interest but could so far not be
observed. At the same time, the experimental probes used in
atomic physics are often quite different from those traditionally
used in condensed-matter experiments and discussed in the
theoretical literature. In particular, for atomic gases there
is no general experimentally established method allowing a
quantitative measurement of the superfluid fraction, which is
traditionally defined through the fluid’s response to rotation
and the emergence of a nonclassical moment of inertia [6]. In
classic experiments on liquid helium [7], under rotation of the
walls of the container, a perfect superfluid remains metastable
in the zero angular momentum state as long as the rotation
rate does not exceed the critical velocity for a superfluid flow.
More generally, the fraction of the fluid which does not rotate
with the walls quantitatively defines the superfluid fraction.

Only very recently some ideas on how to measure the
superfluid fraction of an ultracold atomic gas have been
formulated [8–10]. Specifically, in Ref. [10] a spectroscopic
method was proposed, which closely follows the traditional
definition of the superfluid density but allows a signal readout
which plays to the strengths of atomic physics. This proposal
builds on the recent developments in the use of optical fields
to induce artificial gauge fields for ultracold atoms [11]. The
key idea is that if slow rotation of the gas is induced by an
optical gauge field, this creates a natural coupling between
the external (angular momentum) and the internal (hyperfine)
atomic degrees of freedom. Measuring the populations of
hyperfine states in an atomic cloud then allows a direct readout
of the angular momentum induced by the rotation, and thus

a measurement of the moment of inertia and the superfluid
fraction.

The basic connection between the hyperfine populations
and the superfluid fraction was pointed out in Ref. [10]
by considering the difference between a perfect superfluid
with no angular momentum and a fully relaxed gas which
exhibits the classical value of the moment of inertia. Here
we extend this theoretical work in several ways. First, we
include in our calculations the effects of nonzero temperature
and interactions in the gas, which broaden the distribution of
angular momenta around zero for a metastable superfluid, and
around the classical value set by the imposed rotation for a fully
relaxed gas. This allows us to assess the quantitative accuracy
of the proposed measurement, and to estimate the experimental
parameters which, in practice, would allow a good compromise
between the theoretical accuracy of the method and the
experimentally relevant size of the readout signal. Second, we
explicitly calculate the expected experimental signal in two
important cases: For a weakly interacting Bose gas we show
that the spectroscopically deduced superfluid fraction closely
follows the condensate fraction below the critical temperature;
this confirms that the proposed method gives the expected
result in this well-understood limit. On the other hand, in the
limit of strong interactions the superfluid and the condensate
fraction of the gas can be quite different, as is known from
the case of liquid helium [12]. We show that in this limit the
spectroscopic measurement is sufficiently accurate to allow a
clear experimental distinction between the two quantities.

The paper is organized as follows. In Sec. II we lay out the
theoretical background on the concept of superfluid density
and its connection to hyperfine populations in an atomic cloud
rotated with the use of optically induced gauge potentials. In
Sec. III we give some more details on a specific implementation
of gauge fields in an atomic system. In Sec. IV we discuss the
quantitative theoretical corrections to the mapping between the
hyperfine populations and the superfluid fraction. To illustrate
the effect of these corrections we first consider a normal gas at
nonzero temperature; this already allows us to anticipate suit-
able experimental parameters which lead to sufficiently small
theoretical inaccuracies and sufficiently large experimental
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signals. In Sec. V we extend our calculations to interacting
gases, at both zero and nonzero temperature. Our results for
the expected experimental signals in both weakly and strongly
interacting gases are presented in Sec. VI. Finally, Sec. VII
contains a summary of the paper.

II. SUPERFLUID DENSITY

The concept of a superfluid density, or superfluid fraction,
originates in the two-fluid model for the hydrodynamics of
superfluid 4He proposed by Tisza [13,14] and Landau [15]. The
fluid, of total density ρ, is assumed to consist of a superfluid
component, of density ρs , which has vanishing viscosity and
flows without dissipation, and a normal component of density
ρn = ρ − ρs . Landau proposed [15] how to measure these
separate components. He envisaged taking superfluid helium
at rest in its container and slowly rotating the walls at a constant
angular velocity ω. The normal component equilibrates and
moves along with the rotating walls; however, the superfluid
component is unaffected and remains at rest. Since only the
normal component moves, the moment of inertia of the fluid
is determined by ρn, and its ratio to the expected classical
moment of inertia (defined by the total density ρ) provides
the normal fraction ρn/ρ and hence the superfluid fraction
1 − ρn/ρ. Note that it is necessary that the trap is not perfectly
rotationally symmetric (i.e., the walls must be rough), so that
the normal fluid can relax into the steadily rotating state and
come into equilibrium by changing its angular momentum.

This method was implemented for superfluid helium in
the classic experiments by Andronikashvili [7]. In those
experiments it was not the container that was rotated, but a
stack of disks embedded in the fluid. Still, the disks drag just
the normal fluid, so measurements of the moment of inertia of
the disks (using a torsional oscillator) allowed a determination
of the normal and superfluid fractions.

The nonclassical moment of inertia arising from the
superfluid component provides the standard definition of the
superfluid fraction [6]. To discuss this theoretically, it is
customary to consider the fluid to be contained in a ring-shaped
toroidal vessel with a radius R much larger than its transverse
dimensions �R (see Fig. 1). In this case, the classical moment
of inertia for N atoms of mass M is given by Icl = NMR2. We
shall assume this geometry throughout this paper, in part for
theoretical simplicity, but also for practical reasons discussed

Aφ

vs=ω R

R

∆R

FIG. 1. Geometry of the vessel considered in this paper: a torus
of radius R with transverse dimensions �R � R. Aϕ is the gauge
potential introduced by light fields, corresponding to rotation with
angular frequency ωeff . This induces a superfluid flow with speed vs

in the direction opposite to Aϕ .

later. The superfluid fraction is then defined [6] by the average
angular momentum 〈L〉 picked up under rotation of the vessel
with an angular frequency ω:

ρs

ρ
≡ 1 − lim

ω→0

( 〈L〉
Iclω

)
. (1)

The limit ω → 0 of slow rotation of the vessel is required
such that the velocity of the walls of the container ωR does
not exceed the critical velocity of the superfluid vcrit : ω <

vcrit/R. Since finite-size effects can be much more important
in ultracold atomic gases than in typical experiments on
superfluid helium, it is helpful to expand further on this point.
For a very small rotation rate, namely when ω < h̄/2MR2,
even an ideal Bose gas shows a nonclassical moment of
inertia, and could thus be considered to be superfluid [16]. (For
ω < h̄/2MR2, the lowest-energy single-particle state remains
the state with vanishing angular momentum, so an ideal
condensate has L = 0.) We define superfluidity in the strongest
sense of Ref. [16], which is the sense that is conventionally
applied: The angular momentum is measured with an imposed
rotation frequency in the range h̄/2MR2 < ω < vcrit/R. The
lower limit excludes the ideal Bose gas as a superfluid. For a
large system R � h̄/Mvcrit, this constitutes a wide range of
frequencies. For a weakly interacting Bose gas vcrit ∼ h̄/Mξ

(where ξ is the healing length, which will be further considered
in Sec. V), and so the range of frequencies is wide for R � ξ .

This method could, in principle, be applied to ultracold
atomic gases, using a rotating deformation of the trap to
represent the rotating walls of the container. However, in
practice this is hard, as a measurement of the induced angular
momentum or mass flow is difficult for ultracold gases. For
harmonically trapped gases, an ingenious method of measuring
the angular momentum has been applied [8,17,18]. A theo-
retical proposal has shown how the superfluid density could
be extracted more generally if local imaging is possible [9].
In this paper we explore an alternative theoretical proposal [10]
in which the rotation is simulated by an optically induced
gauge field. A key feature of this method is that it allows
one to measure the angular momentum spectroscopically and
hence deduce the superfluid fraction of an ultracold atomic
gas.

The basis of the idea is the coupling of light with orbital
angular momentum [19] to internal atomic spin states, thereby
creating an azimuthal gauge field Aϕ [20]. The azimuthal
gauge field leads to the same effects as rotation, albeit in
a slightly different manner. In the presence of the gauge
field one must make a distinction between the canonical
momentum pcan and the kinetic momentum p = pcan − A.
In the absence of a gauge field, a superfluid that is at rest in
the toroidal vessel has no winding number of its phase (no
vortices) and corresponds to the case of vanishing canonical
momentum pcan = 0. This does not change when the gauge
field is introduced. However, as the gauge field is turned on,
the superfluid picks up a nonzero velocity p/M = −A/M .
On the other hand, for a normal fluid, as the gauge field is
switched on, the fluid will always stay at rest with the walls
of the container (provided they are rough). Thus, compared
to the rotating container discussed previously, here it is the
superfluid that moves while the normal fluid stays at rest. The
case of the gauge field is, in fact, exactly equivalent to a rotating
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vessel, but where one views the system in the rotating frame
of reference and so experiences the trap (and normal fluid) to
be at rest.

To make this discussion more precise, note that when the
optically induced gauge field is on, the atoms experience an
effective dispersion relation which can be written as

E � E0 + h̄2

M∗R2

(
�2

2
− ��∗

)
+ O(�3), (2)

where � is the angular momentum in units of h̄, such that it is
quantized to integer values. M∗ is a new effective mass of the
atoms and �∗ is the rotational shift due to the gauge field. (We
will derive this in the next section.) This effective dispersion
is equivalent to an azimuthal gauge field Aϕ = h̄�∗/R. It
corresponds to being in a frame of reference rotating with
an effective angular velocity

ωeff = h̄�∗

M∗R2
. (3)

For example, a particle with � = 0 will have an angular
group velocity (1/h̄)dE/d� = −ωeff . Following the previous
discussion, if ωeff is slowly increased from zero, the superfluid
will remain in its original state with 〈L〉 = 0 but will flow with
speed vs = ωeffR in the direction opposite to Aϕ . In contrast,
the normal fluid will pick up an average angular momentum
of h̄�∗ per particle but will retain zero average velocity.

A key feature of the proposal [10] is that since the gauge
field is generated by mixing internal hyperfine states of the
atoms, this provides a natural coupling between internal and
external degrees of freedom. Spectroscopically measuring the
population of the different internal spin states allows the
average angular momentum per atom h̄〈�〉 to be deduced.
We will focus on the population difference of the hyperfine
states |+1〉 and |−1〉 in a three-level system (with amplitudes
ψ+1 and ψ−1, respectively), but this could be adapted to other
internal structures. (The three-level system will be described
in further detail in the next section.) For a single atom with
angular momentum � we define the population difference as

�p� ≡ |ψ−1(�)|2 − |ψ+1(�)|2. (4)

A measurement of the populations N+1 and N−1 for a gas of
such atoms leads to the fractional population difference �p,
which may be expressed in terms of �p� as

�p ≡ N−1 − N+1

N
=

∑
�〈n�〉[|ψ−1|2 − |ψ+1|2]∑

�〈n�〉

=
∑

�〈n�〉�p�∑
�〈n�〉 . (5)

Within the assumption that �p� can be expanded to first order,

�p� � �p0 + �p′� + O(�2), (6)

one can deduce the angular momentum expectation value

〈L〉
Nh̄

≡ 〈�〉 ≡
∑

�〈n�〉�∑
�〈n�〉 � �p − �p0

�p′ . (7)

Putting this back into Eq. (1), one gets

ρs

ρ
� 1 − lim

�∗→0

�p − �p0

�p′�∗ , (8)

where the appropriate moment of inertia Icl = NM∗R2 has
been used. For a perfect superfluid we would expect to find
�p ≡ �p0, whereas for a normal fluid we would expect to find
�p ≡ �p0 + �p′�∗, thus allowing us to distinguish between
the two.

The main goal of this paper will be to analyze the quantita-
tive accuracy of Eq. (8), allowing for corrections that arise from
the higher-order terms that are neglected in Eqs. (2) and (6).
However, for now, note that the spectroscopic technique
should show a clear qualitative signature of superfluidity. For
a normal fluid (or the normal fraction), it does not matter
in which order one increases �∗ and cools the gas to its
final temperature: that is, these two operations “commute.”
However, for the superfluid fraction these operations do not
commute: If one first cools at �∗ = 0 and then imposes
nonzero �∗, the superfluid is pushed into a (metastable)
state in which it is moving with respect to the walls of the
container; if one first imposes nonzero �∗ and then cools, the
superfluid will be formed at rest with respect to the walls.
Thus, depending on the order, the system is led either to
the nonrelaxed metastable superfluid condensed in a state
of vanishing (canonical) angular momentum �c = 0, which
we label “SF,” or to the relaxed superfluid, condensed in
the ground state �c = �∗, which we label “RSF.” The two
cases will have different fractional hyperfine populations,
�pRSF �= �pSF, so the change in population allows a clear
qualitative signature of metastable superfluid flow.

III. OPTICALLY DRESSED STATES

There are several well-established theoretical proposals for
how optical fields can be used to create fictitious gauge fields
in neutral atomic gases [11]. The scheme we follow here is
closely related to that implemented in the experiments of
the NIST group [21,22]. However, it is adapted to generate
an azimuthal vector potential by using optical beams with
orbital angular momentum [20]. As described previously,
throughout this work we assume that the gas is confined in
a toroidal trap (Fig. 1) with radius R, large compared to its
transverse dimensions �R. This simplifies the experimental
implementation of the azimuthal gauge field, as it will be
sufficient to require that the optical fields are uniform only
over the range �R.

We consider atoms with three hyperfine levels [21] in
their electronic ground state (e.g., 23Na with F = 1). The
degeneracy of the three hyperfine states MF = 0, ± 1 is
lifted by applying a weak external magnetic field B, thereby
inducing a Zeeman shift �E = ZMF with an energy gap
Z = gF µBB between the hyperfine states. These states are
coupled by two copropagating Laguerre-Gauss beams with
frequencies ω1, ω2 and orbital angular momenta �1, �2. The
frequencies are chosen such that they are detuned from any
actual electronic transition, thus single-photon transitions are
suppressed. Instead, the hyperfine states are coupled by two-
photon Raman transitions (see Fig. 2). For every two-photon
transition the atom experiences a net change in its center-of-
mass angular momentum of �� = �1 − �2, while the change
in linear momentum can be neglected. Hence there exists
a coupling between |MF = −1,� − ��〉 and |MF = 0,�〉 as
well as between |MF = 0,�〉 and |MF = +1,� + ��〉. The two
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FIG. 2. Sketch of a two-photon Raman transition between hyper-
fine levels, adapted from Spielman et al. [21,22].

light beams are slightly detuned from the Raman two-photon
resonance, with detuning δ ≡ (ω1 − ω2) − Z/h̄. Including the
kinetic energies of the different angular momentum states and
applying the rotating wave approximation [21], one arrives at
the full Hamiltonian, Ĥ (�)/h̄:⎛
⎜⎝

h̄
2MR2 (� + ��)2 − δ 	R/2 0

	R/2 h̄
2MR2 �

2 	R/2

0 	R/2 h̄
2MR2 (� − ��)2 + δ

⎞
⎟⎠ . (9)

The � dependence has been made explicit; each atomic state
is defined by the amplitudes of the three hyperfine states and
its angular momentum �. Here 	R is the two-photon Rabi
frequency which describes the coupling between hyperfine
states. The effect of the Zeeman splitting is given by δ [23].
For each � there are three energy eigenvalues of Eq. (9),
corresponding to three dressed energy bands.

In Fig. 3, we show the results of a numerical diagonalization
of the Hamiltonian (9). The three uncoupled energy levels
for 	R = 0 are shown as dotted lines. When the light is on,
	R �= 0, these levels are mixed and lead to the energy levels
of the dressed states (solid lines). For nonzero detuning δ

the minimum of the lowest band is displaced to a nonzero
angular momentum �∗. Provided that all atoms are restricted to

-2 -1 0 1 2

0

2

4

E
/ [
h̄

2
(∆

� )
2
/M

R
2
]

ΩR = 2h̄(∆�)2/MR2

ΩR = 0

�∗

�/∆�

FIG. 3. Coupled (solid lines) and uncoupled (dashed lines) energy
bands of a three-level system, from Ref. [10], with the parameter
δ = 0.5h̄(��)2/MR2. The smooth curves interpolate between the
allowed integer values of �.

states in the lowest-energy dressed band, the atoms experience
an effective dispersion relation of the form (2) in which the
nonzero �∗ plays the role of an azimuthal gauge field.

Throughout this paper, we assume that only this lowest
dressed band is occupied. This is justified if the chemical
potential µ and temperature kT are small compared to the
band splitting, which is of order h̄	R . Hence we require that
	R be sufficiently large. The lowest band will be referred to
as ε0

‖ (�) in Sec. V. To obtain the results shown in Sec. VI, we
determine ε0

‖ (�) by the numerical solution of Eq. (9). However,
to allow an understanding of the general trends, we derive some
analytic expressions which are valid for large 	R , where the
bands are far apart from each other and the lowest band is
nearly parabolic. Perturbation theory in 1/	R shows [10] that
the minimum of the dispersion relation is shifted from � = 0
to

�∗ � −
√

2
δ

	R

�� + O
(
1/	2

R

)
, (10)

and the bare mass is increased to an effective mass M∗, with

M∗ � M

(
1 +

√
2h̄(��)2

MR2	R

)
+ O

(
1/	2

R

)
. (11)

Similarly, perturbative calculations of |ψ−1(�)|2 and |ψ+1(�)|2
show that they have equal and opposite contributions linear in
�. The difference |ψ−1(�)|2 − |ψ+1(�)|2 can indeed be written
as a series in �, as in Eq. (6), with

�p0 � δ

	R

[√
2 − h̄(��)2

MR2	R

]
+ O

(
1/	3

R

)
, (12)

�p′ � −
√

2
h̄��

MR2	R

+ O
(
1/	2

R

)
. (13)

As parameters representative of experiments, throughout this
paper we consider sodium with M = 23 mp (where mp is the
proton mass) in a trap of radius R = 10 µm. A typical value
of the effective mass is M∗ ≈ 1.15M (at a two-photon Rabi
frequency 	R = 2π × 100 kHz and for �� = 50).

IV. CORRECTIONS

In the preceding sections, we have summarized the theo-
retical proposal of Ref. [10]. This showed how to relate the
superfluid fraction to a spectroscopically determined hyperfine
population imbalance [see Eq. (8)]. The quantitative accuracy
of this relation relies on the validity of the termination of the
Taylor expansions in Eqs. (2) and (6) at quadratic and linear
orders, respectively. If these (terminated) expansions were
exact, the superfluid fraction would be perfectly determined
by Eq. (8). In practice, higher-order corrections do exist, that
is,

E = Eparabolic + c�3 + · · · , (14)

�p� = (�p�)linear + c′�2 + · · · , (15)

where Eparabolic and (�p�)linear correspond to the lower-order
expansions (2) and (6).

023610-4



SPECTROSCOPIC METHOD TO MEASURE THE . . . PHYSICAL REVIEW A 83, 023610 (2011)

The higher-order corrections have two major implications.
First, corrections to �p� of quadratic or higher order in

� lead to a deviation of the spectroscopic measurement [the
right-hand side of Eq. (7)] from the actual average angular
momentum 〈�〉.

Second, corrections to the effective kinetic energy E of
cubic or higher order in � mean that even the very definition
of the superfluid fraction, Eq. (1), breaks down. A basic
assumption of this definition is that the rotational properties
of a (normal) gas are entirely characterized by its moment
of inertia. This is correct provided the kinetic energy is a
quadratic function of the angular momentum. Then, under
a transformation to a frame rotating at angular frequency ω,
the interaction energy is unchanged, and the (parabolic) kinetic
energy transforms as E → E′ = E + ω · 〈L〉 + 1

2Iclω
2. Thus,

for a state of a given average angular momentum, the only
material property characterizing the net energy change is
the moment of inertia Icl. For nonparabolic kinetic energy,
however, the kinetic energy does not transform in any simple
way, but depends on the populations of the individual angular
momentum states and hence also on how interactions and/or
temperature have distributed particles among these levels. The
moment of inertia of even a normal gas cannot be assumed
simply to be a constant Icl.

We now turn to estimate the quantitative effects of these
two forms of correction.

First we consider the effects of the higher-order corrections
to �p�, Eq. (15). Because of the departure of �p� from
its linear expansion, we find �p′�∗ �= �p�∗ − �p0. This
difference is illustrated for different combinations of 	R

and �� in Fig. 4, where the dashed lines show �p′�∗ and
the diamonds show the actual difference �p�∗ − �p0. As a
consequence, Eq. (8) would give a systematically incorrect
result even in the T → 0 limit. In practice, this can be corrected
by replacing the denominator in Eq. (8) by �p�∗ − �p0.

A more serious problem arises from the fact that nonzero
temperature and/or interactions populate a range of � states.
Due to this broadening of the distribution function, the higher-
order corrections to �p� in Eq. (15) lead to the situation
that for a normal gas (or a relaxed superfluid) with average
momentum 〈�〉 = �∗, the spectroscopic signal �p is not just
determined by the signal of the state at �∗, but depends on
the overall distribution function, so �p �= �p�∗ . Similarly, for
the (metastable) superfluid with 〈�〉 = 0, one has �p �= �p0.
Hence one would incorrectly determine the superfluid fraction.
To estimate the size of this error, we here consider the effect
of temperature using the example of an ideal Boltzmann
gas. (Interactions will be considered in Secs. V and VI.) We
populate the different � states in the lowest band (see Fig. 3)
according to a Boltzmann distribution n� ∝ exp[−ε0

‖ (�)/kT ].
The results are shown for a range of temperatures by the
solid lines in Fig. 4. If the effects of thermal broadening were
negligible, all these curves would agree with �p�∗ − �p0 (the
diamonds in Fig. 4).

Increasing 	R decreases the relevance of higher-order
corrections, but also diminishes the signal size �p′�∗ and
thus leads to a bigger experimental uncertainty. Increasing
�� has the opposite effect. One goal of this paper is to find
parameters for which a good compromise can be reached,

FIG. 4. (Color online) Results for a normal gas: Ideal signal
size �p′�∗ and temperature-dependent deviation from this as a
function of the detuning δ/	R . Data are for a classical Boltzmann
gas at several values of 	R and ��. Diamonds denote the zero-
temperature limit (�p�∗ − �p0) at different values of �∗. The
curves are labeled from top to bottom, and �∗ is labeled from left
to right.
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such that there is both a large experimental signal and small
systematic inaccuracies.

For δ/	R � 1, the influence of 	R and �� on signal
strength and higher-order corrections can be seen in the
expressions from perturbation theory. Using the perturbative
expansions in 1/	R (see Sec. III), the signal size is given by

�p′�∗ � 2
δ

	R

h̄

MR2	R

(��)2 + O
(
1/	3

R

)
, (16)

and considering the corrections to �p� in Eq. (15), the second-
order coefficient c′ is given by

c′ � −3
√

2
δ

	R

(
h̄

MR2	R

)2

(��)2 + O
(
1/	4

R

)
. (17)

These expressions show that increasing �� is an effective way
to increase the signal size, but also has an adverse effect on
the accuracy. Accuracy is improved by increasing 	R , but at
a reduction in signal size. As a trade-off one would thus try
to make �� as high as possible, and then increase 	R as long
as the signal size remains big enough. As a reasonable, and
experimentally feasible, compromise we choose �� = 50 and
	R = 2π × 100 kHz [as in Fig. 4]. These are the values we
will use throughout the remainder of this paper.

Second, and finally, we return to the definition of superfluid-
ity in Eq. (1) and estimate its adequacy. Measuring the relative
deviation (〈�〉 − �∗)/�∗ is a way to assess the departure from
parabolicity due to the terms of E which are odd in �. For the
Boltzmann gas of Fig. 4, the relative deviation is maximal at
�∗ ∼ δ → 0 (with a maximum value ∝ 1/	2

R) and decreases
with higher δ. At T = 1000 Hz [24], the maximum value
of the deviation at δ → 0 is about 0.3%. To further quantify
the size of nonparabolic corrections to the dispersion relation,
we have carried out fourth-order perturbation theory [25] in
1/	R . The next terms in the series in � are

E � Eparabolic −
√

2
δ

	R

h̄4(��)3

(MR2)3	2
R

�3

+ 1

2
√

2

h̄5(��)4

(MR2)4	3
R

�4 + O(�5), (18)

where both coefficients have higher-order contributions of
O(1/	4

R). The contributions of the cubic and quartic terms
relative to the parabolic term (h̄2�2/2M∗R2) are of order
10−4� and 10−7�2, respectively. This is on the same order as
the 0.3% estimated previously: For T = 1000 Hz and �∗ = 1,
the root mean square angular momentum is

√
〈�2〉 ∼ 16, so we

would expect the relative correction due to the cubic term to
be about 0.2%. This deviation of the dispersion relation from
parabolicity sets an upper bound to the accuracy with which
one can determine the superfluid fraction.

V. INTERACTIONS

In addition to the effects of nonzero temperature on a normal
fluid, we want to know what happens to �p due to interactions
in a superfluid. It is important to note that a gas is only
superfluid because of interactions; in the limit of vanishing
interaction strength, the critical velocity (see Sec. V C) goes
to zero, so a metastable superfluid flow cannot be maintained.

pz

L

L

R

FIG. 5. The system geometry employed in this section, a toroidal
trap with hard walls and a cross-sectional area L × L. For the radius
R � L, angular momentum � can be unrolled unto the pz direction,
pz = h̄�/R, which then has effective periodic boundary conditions.
Thus � and pz will be used interchangeably.

Here we do not attempt a full model of the interacting gas in
a trap. Rather, we aim to use a method that includes interactions
in the simplest way. We therefore consider an interacting gas
with uniform density. The density inhomogeneity near the
walls is on the scale of the healing length ξ = (8πna)−1/2,
which is the distance over which the condensate recovers its
bulk value from zero density at the walls. We assume that
ξ � �R and that we can thus neglect the density inho-
mogeneity. We therefore model the gas in a ring-like trap
by considering a torus of radius R and with a rectangular
cross-sectional area A = L × L (see Fig. 5). Since we neglect
density inhomogeneities, we consider the system to be uniform
and impose periodic boundary conditions in the transverse
directions. For L ∼ �R � R we can unroll the angular
momentum from the circumferential direction of the torus onto
a line with periodic boundary conditions, equivalent to a linear
momentum pz = (h̄/R)�, where � is the angular momentum
(in units of h̄) defined previously. With this understanding we
will use � and pz interchangeably.

We are only interested in the azimuthal motion, pz or �, in
which we would like to measure superfluidity. Therefore we
will integrate out the two transverse directions p⊥. These have
a simple kinetic energy dispersion p2

⊥/2M . In the azimuthal
direction we allow for a general dispersion relation ε0

‖ (pz), set
by the energy of the lowest band of the Hamiltonian (9). The
total dispersion relation is given by

ε0( p) = 1

2M
p2

⊥ + ε0
‖ (pz). (19)

Later on we will compare the superfluid fraction with the
condensate fraction, so it is instructive to determine the number
of excited particles Nex. Here, we will determine this for an
ideal noninteracting gas, as many of the features will carry
over to the interacting case discussed later. In a noninteracting
gas the number of excited particles is given by

Nex =
∑
p �=0

nB(ε0( p)), (20)

where nB(ε) = [exp(ε/kT ) − 1]−1 is the Bose-Einstein dis-
tribution in the condensed system (for which the chemical
potential vanishes, µ = 0). We split the sum,

Nex = N⊥
ex(pz = 0) +

∑
pz �=0

N⊥
ex(pz), (21)
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defining

N⊥
ex(pz) ≡

∑
p⊥�=0

nB[ p2
⊥/2M + ε0

‖ (pz)]. (22)

Here we assume without loss of generality that the energy
minimum is at ε0

‖ (pz = 0) = 0. We switch to an integral rep-
resentation according to

∑
p → L

2πh̄

∫
dp. The term N⊥

ex(pz)
with pz �= 0 does not pose any problems. However, when
evaluating the pz = 0 contribution, we find

N⊥
ex(pz = 0) = A

(2πh̄)2

∫
d2 p⊥nB( p2

⊥/2M)

= 2πA

(2πh̄)2

∫ ∞

0
dp p nB(p2/2M), (23)

which is infrared divergent. For p → 0, the integrand is
approximately given by p/(p2/2M kT ) ∼ 1/p, thus the indef-
inite integral at small momenta is ∼ − ln(pmin). Fortunately,
in the thermodynamic limit this logarithmic divergence is
unproblematic. Noting that the low-momentum cutoff is
pmin ∼ 1

L
, one finds N⊥

ex(pz = 0) ∼ (A/λ2
T ) ln(L/λT ), where

λT is the thermal de Broglie wavelength. The other contribu-
tions are extensive, N⊥

ex(pz �= 0) ∼ (V/λ3
T ), so

N⊥
ex(pz = 0)

N⊥
ex(pz �= 0)

∼ λT

R
ln(L/λT ), (24)

and N⊥
ex(pz = 0) can be neglected in the limit λT � R. The

same reasoning applies when taking interactions into account,
so from now on we will drop the pz = 0 contribution to Nex

and replace
∑

p �=0 by
∑

pz �=0

∑
p⊥�=0.

A. Weak interactions with asymmetric dispersion

In the following we consider an interacting gas, with
a general, possibly asymmetric, noninteracting dispersion
relation ε0( p). Since we study atoms in the ultracold limit, all
interactions can be treated as contact interactions Ueff(r,r ′) =
U0δ(r − r ′). Here we take U0 = 4πh̄2a/M , assuming for
simplicity that the scattering length a is independent of the
internal state. The Hamiltonian in the momentum basis is

Ĥ =
∑
i, p

ε0
i, pâ

†
i, pâi, p + 1

2V
U0

∑
ijkl

∑
p, p′,q

â
†
i, p + q â

†
j, p′−q âk, p′ âl, p.

(25)

The indices i, j , k, and l stand for internal states (e.g., one of
the three hyperfine bands). As we assume that only the lowest
band is occupied (see Sec. III), we can ignore interband mixing
and simplify Eq. (25) to the Hamiltonian we will consider
hereafter:

Ĥ =
∑

p

ε0( p)â†
pâ p + U0

2V

∑
p, p′,q

â
†
p + q â

†
p′−q â p′ â p. (26)

1. Bogoliubov transformation

We assume that the condensate has only one macroscop-
ically occupied state pc = 0. Should the condensate be in a
state pc �= 0, we can shift all momenta by relabeling the states
to p′ ≡ p − pc with energy ε0′( p′) = ε0( pc + p′). We note
that, for a superfluid, the state pc is not necessarily the ground

state: for example, as in the protocol described previously, a
superfluid may remain condensed in � = 0 even after a gauge
field is applied such that the lowest-energy single-particle state
has �∗ �= 0. Our discussion in this section also applies to these
metastable superfluid states.

The creation and annihilation operators of the ground state
are â

†
0 and â0, respectively. We have 〈â†

0â0〉 = N0, where N0

is the number of particles in the condensate. For N0 � 1, we
can therefore neglect the commutator [â0,â

†
0]− = 1 compared

to the operator â
†
0â0, and replace the ground-state operators

by a c-number: â0 � â
†
0 � √

N0. Expanding the interaction
term and only keeping terms of order O(N0) or higher (i.e.,
assuming the only relevant interactions are with the condensate
state), one finds

Ĥ � Nε0(0) + U0N
2

2V
+

∑
p �=0

[ε0( p) − ε0(0) + U0n0]â†
pâ p

+ U0n0

2

∑
p �=0

(â†
pâ

†
− p + â pâ− p)

=
∑
p �=0

′{[ε0( p) − ε0(0) + ε1] â†
pâ p+[ε0(− p) − ε0(0) + ε1]

× â
†
− pâ− p

} +
∑
p �=0

′ε1(â†
pâ

†
− p + â pâ− p) + Eoffset, (27)

where the prime on the sum denotes that we only sum over
(an arbitrary) half of momentum space. Here n0 ≡ N0/V is
the condensate density, and we have defined ε1 ≡ U0n0 =
4πh̄2an0/M , which sets the chemical potential µ = ε1. The
constant terms have been absorbed into Eoffset.

We diagonalize the Hamiltonian using the Bogoliubov
transformation

α̂ p := uâ p + vâ
†
− p,

(28)
α̂− p ≡ β̂ p := uâ− p + vâ†

p,

with [α̂,α̂†]− = [β̂,β̂†]− = u2 − v2 = 1. The Hamiltonian
(27) is diagonalized by choosing u2 = 1

2 ( ε̄
ε

+ 1) and v2 =
1
2 ( ε̄

ε
− 1), leading to

Ĥ = Eoffset +
∑
p �=0

1

2
(ε − ε̄) +

∑
p �=0

(ε + γ̄ )︸ ︷︷ ︸
εexc

α̂†
pα̂ p, (29)

where εexc( p) = ε( p) + γ̄ ( p) is the energy of Bogoliubov
excitations. We have defined [26]

γ ( p) = 1
2 [ε0( p) + ε0(− p)] − ε0(0),

γ̄ ( p) = 1
2 [ε0( p) − ε0(− p)],

(30)
ε̄( p) = γ ( p) + ε1,

ε( p) =
√

ε̄2 − ε2
1 =

√
γ (γ + 2ε1).

γ ( p) denotes the symmetric part of the noninteracting dis-
persion relation, shifted such that γ ( pc) = 0. ε( p) is the
symmetric part of the Bogoliubov excitation energy. γ̄ ( p)
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denotes the asymmetric part of the excitation energy, and is
the same for both the noninteracting and interacting cases.
As opposed to the standard case of a symmetric dispersion
relation, we find γ̄ �= 0 and a dependence of the energy εexc

of Bogoliubov excitations on �∗. We shall use this in Sec. V C
to determine the critical velocity at which the metastable
superfluid becomes unstable.

2. Depletion of the condensate

We can write the operator for the total number of particles
as

N̂ = N0 +
∑
p �=0

â†
pâ p. (31)

When we apply the Bogoliubov transformation, we find

N � N0 +
∑
p �=0

1

2

(
ε̄

ε
− 1

)
+

∑
p �=0

ε̄

ε
〈α̂†

pα̂ p〉, (32)

where we have already taken the expectation value. At zero
temperature

N (T = 0) = N0 +
∑
p �=0

1

2

(
ε̄

ε
− 1

)
. (33)

After changing the sum to an integral, we can analytically
integrate out the transverse directions. In terms of the number
density n = N/V we get

n(T = 0) = n0 + n0a

2πR

∑
pz �=0

[
1 + γ

ε1

(
1 −

√
1 + 2

ε1

γ

)]
,

(34)

where γ is evaluated at p⊥ = 0; γ = γ (pz; p⊥ = 0). Each
term of the sum gives the corresponding �-state occupation
n�(T = 0).

To find the temperature-dependent depletion, we calculate
the expected excitation number 〈α̂†

pα̂ p〉 = nB(εexc( p)). The
energy of such thermal excitations is given by εexc = ε + γ̄ .
Changing the integral over transverse directions into an
integration over the dimensionless x = p2

⊥/(2Mε1) leads to

n(T ) − n(T = 0)

= n0a

πR

∑
pz �=0

∫ ∞

0
dx

x + 1 + γ /ε1√
(x + 1 + γ /ε1)2 − 1

× 1

exp[(ε1

√
(x + 1 + γ /ε1)2 − 1 + γ̄ )/kT ] − 1

,

(35)

again with γ = γ (pz; p⊥ = 0). In general, this integral has to
be evaluated numerically. Similarly to previously, the terms
of this sum give the finite-temperature distribution function
n�(T ) − n�(T = 0).

B. Popov approximation

To extend the validity of our approximation to higher
temperatures, we employ the Popov approximation. In the
homogeneous system, the Popov approximation leads to
the same Hamiltonian as in the Bogoliubov theory, except

for a simple excitation-independent energy offset. Thus the
distribution function stays the same; the only difference is that
now we need to determine n0 self-consistently, both at zero
and at nonzero temperatures [27,28].

As the zero-temperature distribution (34) is symmetric
around � = 0, at T = 0 the average angular momentum
is always zero, 〈�〉 ≡ 0, for any interaction strength. This
recovers the expectation that ρs/ρ = 1 even if the condensate
is depleted by interactions. We calculate the zero-temperature
depletion for a parabolic dispersion relation ε0

‖ = h̄2�2

2MR2 = γ .
We approximate the sum in Eq. (34) by an integral,

n − n0

n0
= a

2πR

2πR

2πh̄

∫ ∞

0
dpz

[
1 + γ

ε1

(
1 −

√
1 + 2

ε1

γ

)]
,

(36)

which can be evaluated analytically, giving

n − n0

n0
= a

√
2M

2πh̄

√
4πh̄2an0

M

(
+ 4

3

√
2

)

= 8

3
√

π
(n0a

3)1/2, (37)

where we substituted ε1 = 4πh̄2an0/M . The resulting expres-
sion for the condensate fraction,

n0

n
�

[
1 + 8

3
√

π
(n0a

3)1/2

]−1

, (38)

is not in a closed form; we have to find a self-consistent
solution for n0 numerically. At small depletions nex/n � 1,
Eq. (38) simplifies to the Bogoliubov result [27], n0/n �
1 − 8

3
√

π
(na3)1/2.

According to this theory, one would simply occupy the
lowest band as stated in the interacting distribution function
given by Eq. (35) until convergence is achieved. For a parabolic
dispersion relation, Eq. (35) has an asymptotic behavior n� ∝
1/�2 at large momenta � � 1, and thus extends to very high �.
However, the physical distribution of atoms does not extend
beyond �max ∼ R/Re, where Re is the range of the interaction
potential (in practical terms, this is of the same order as the
scattering length a). Thus we do not trust the expression for
n�, Eq. (35), for �/R >∼ 1/Re ∼ 1/a, and so it is pointless
to do the whole sum. In any case, all the important physics
characterizing the superfluid response is contained in p <∼ h̄/ξ

(equivalent to � <∼ R/ξ ). Hence we introduce a cutoff by
ignoring states with � > �cut. We choose �cut ∼ 10 × 2πR/ξ ,
for which the relative error in �pRSF–�pSF due to the cutoff
with respect to �cut = ∞ is on the order of 10−4.

C. Critical velocity

In order that the system is (meta)stable, the minimum
of the excitation energy εexc = ε + γ̄ has to be positive:
min� εexc(�) > 0. This leads to a critical angular momentum
shift �∗

crit above which, for |�∗| > �∗
crit, the superfluid flow is

unstable. (This is the Landau criterion for stable superfluid
flow.) The determination of the critical �∗ in the general case
requires a full (numerical) determination of the dispersion
relation of the lowest dressed band ε0

‖ (pz). In the limit in
which the noninteracting dispersion relation can be taken to

023610-8



SPECTROSCOPIC METHOD TO MEASURE THE . . . PHYSICAL REVIEW A 83, 023610 (2011)

be parabolic [see Eq. (2)], the symmetric and antisymmetric
parts of ε0

‖ are given by γ (�) = h̄2

2M∗R2 �
2 and γ̄ (�) = − h̄2�∗

M∗R2 �.
Then the lowest-energy Bogoliubov excitation at given � is

εexc( p⊥ = 0) = ε + γ̄ �
√

h̄2ε1

M∗R2
|�| − h̄2�∗

M∗R2
� . (39)

This is positive for all � only if

h̄2|�∗|/M∗R2 <

√
h̄2ε1/M∗R2 .

Substituting ε1 = 4πh̄2an0/M , this corresponds to

|�∗| < �∗
crit =

√
4πR2an0

M∗

M
. (40)

If |�∗| < �∗
crit, then εexc(�) > 0 for all �. On the other hand, if

|�∗| > �∗
crit, then there always is some � such that εexc(�) < 0

and hence the system is thermodynamically unstable. It will
relax due to the introduction of vortices. Equation (40) shows
that the metastable superfluid will become unstable when the
condensate density is too low (i.e., when the temperature is too
high), when interactions are too weak, or when �∗ is too large.

VI. RESULTS

To present the results of our calculations for an interacting
gas, we consider two scenarios. In the first one, we study
a Bose-Einstein condensate (BEC) with weak interactions,
Sec. VI A, for which we show that the proposed measurement
technique gives the expected feature that the superfluid density
and condensate density are almost the same. In the second
scenario, Sec. VI B, we turn to the more interesting case of
a BEC with strong interactions, for which the condensate
fraction and superfluid fraction are significantly different
from each other. We show that the measurement protocol
can distinguish the superfluid fraction from the condensate
fraction. Finally, we will analyze the trade-off between signal
strength and accuracy in Sec. VI C.

As described previously, in our studies the condensate is
assumed to be uniform and boundary effects are neglected.
When discussing temperature dependences, we shall also
assume that the density n is kept constant. For a harmonically
trapped gas, with falling temperature the peak density quickly
rises by more than an order of magnitude from near the tran-
sition point to when most of the atoms are in the condensate.
We ignore this effect since we are primarily interested in
the low temperature properties of the BEC and less in the
behavior around the transition point. In the results we present,
we choose the following parameters: M = 23 mp, R = 10 µm,
	R = 2π × 100 kHz, �� = 50, and n = 1014 cm−3. These are
typical parameters achievable with current technology.

A. Weakly interacting BEC

For a new experimental technique, it is important to
establish that it works in a situation where the result is known.
To that end, it will be valuable to see the results for a weakly
interacting BEC, which can be well described by mean-field
theories. Here we present the signal that one can expect
to measure in such an experiment, for a weakly interacting

BEC with na3 = 10−4. The condensate fraction at T = 0 is
approximately 99%, showing negligible depletion.

As described in Sec. II, the appearance of superfluidity
displays a clear qualitative signal in this measurement tech-
nique. The processes of cooling and of imposing a nonzero
gauge field �∗ do not “commute” for a superfluid, so its
response is hysteretic. First introducing �∗ (by increasing
the Raman detuning δ) and then cooling the gas leads to
a condensate in the new ground state �c = �∗. This is the
“relaxed superfluid” (RSF), with spectroscopic signal �pRSF.
On the other hand, cooling to below the transition point at
�∗ = δ = 0 creates the superfluid in �c = 0. Subsequently
increasing δ leads to a metastable (nonrelaxed) superfluid (SF),
with spectroscopic signal �pSF. Hence it is possible to measure
two separate curves, �pRSF and �pSF. In contrast, for a normal
fluid, cooling and increasing δ do commute.

In Fig. 6(a), we show the spectroscopic signatures of
the metastable superfluid (�pSF) and the relaxed superfluid
(�pRSF) at temperatures below the BEC transition temperature
Tc. (The raw signal has been scaled by �∗ so that the numbers
are of the same order.) One can see that the curves of the
metastable superfluid (�pSF) terminate at certain temper-
atures. This termination happens at a temperature (below
the transition temperature) when the condensate becomes
sufficiently depleted so that |�∗| > �∗

crit. Thus curves with
higher |�∗| break off at lower temperatures. The difference
in the signals �pRSF �= �pSF below this temperature is a clear
signature of the metastable superfluid flow.

To extract a quantitative measure of the superfluid fraction
from these results, one could take the curves for the metastable
superfluid �pSF and use these in Eq. (8). Application of Eq. (8)
requires knowledge of �p0 and �p′. As we have discussed,
the result will also include some quantitative corrections from
higher-order terms in the Taylor expansions (14) and (15) of
E� and �p�. In view of these facts, it is helpful to take the
difference �pRSF–�pSF. This removes the dependence on �p0

and also removes additive systematic errors. The differences
�pRSF–�pSF are shown in Fig. 6(b). Finally, we scale these
differences by the value of the same quantity that is obtained
at T = 0 for a weakly interacting gas,

�pRSF(T = 0, na3 ≈ 0) − �pSF(T = 0, na3 ≈ 0) .

[Since here we consider na3 = 10−4, this is almost identical
to scaling by the T = 0 limit of the curves in Fig. 6(b).]
This value is for a situation (negligible interactions) in
which we know the system should be completely condensed
and perfectly superfluid at T = 0. It provides a direct
measurement of the quantity �p′�∗, while also removing
some multiplicative systematic errors.

The final scaled curves are shown in Fig. 6(c). These
show what the spectroscopic measurement would give for
the superfluid fraction of the weakly interacting BEC as a
function of temperature. The different values of �∗ correspond
to different effective rotation rates. For comparison, the dashed
line shows the numerically determined condensate fraction
n0/n [29]. In this case, of a weakly interacting BEC, it is
expected that the condensate and superfluid fractions should
coincide. Figure 6(c) shows that this result is recovered to a
very good accuracy by the spectroscopic measurement of the
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(a)

(b)

(c)

FIG. 6. (Color online) Qualitative behavior of the proposed su-
perfluidity measurement as a function of temperature (in terms of the
ideal Bose gas transition temperature Tc ≈ 31.1 kHz) at na3 = 10−4:
(a) the raw �p signal scaled by |�∗|; (b) difference signal
�pRSF–�pSF; (c) difference signal normalized to 1 at T = 0, and
comparison with the condensate fraction n0/n. Curves break off due
to reaching |�∗| > �∗

crit � √
4πR2an0. The curves are labeled from

top to bottom.

superfluid fraction. Furthermore, in a practical experimental
measurement with a harmonically trapped gas we expect to
find even better agreement between the spectroscopic mea-
surement and ρs/ρ: Here we chose n = 1014 cm−3, which is a
representative value for the density in the BEC, but this leads
to a transition temperature which is several times higher than
that found in experiments. In a typical experiment, the density
would vary such that Tc is lower, so kT /h̄	R would be smaller
and quantitative corrections should have less of an effect.

B. Strongly interacting BEC

We will now consider how the spectroscopic method can be
used to provide an accurate quantitative measurement of the
superfluid fraction in a regime where the condensate fraction
n0/n and the superfluid fraction are significantly different. To
this end, we shall consider a relatively strongly interacting
BEC, with an interaction parameter up to na3 = 0.1. We
cannot trust Popov theory to be an accurate quantitative theory
of an atomic gas in regimes of strong interactions. However, we
can still use the results of Popov theory to assess the accuracy of
the spectroscopic method of measuring the superfluid fraction.
Specifically, we know that, even for a strongly interacting gas,
in the low temperature limit the superfluid fraction should be
ρs/ρ = 1, while the condensate fraction can be significantly
depleted. Here we wish to demonstrate that the difference
between condensate fraction and superfluid fraction can be
observed using the spectroscopic measurement method.

As described in Sec. IV, while considering an accurate
quantitative measurement of ρs/ρ, we face problems coming
from higher-order corrections, which even cause the usual
definition of superfluidity to break down. For this reason, to
proceed we follow the protocol that was outlined in Sec. VI A.
We propose to define a spectroscopically measured superfluid
fraction by

ρ
spec
s

ρ
≡ �pRSF(T , na3) − �pSF(T , na3)

�pRSF(T = 0, na3 ≈ 0) − �pSF(T = 0, na3 ≈ 0)
.

(41)

The denominator gives the reference signal at zero temperature
and with negligible interactions, where the system is
completely condensed into the ground state and 100%
superfluid. (The interactions cannot be exactly zero, as one
requires |�∗| < �∗

crit �
√

4πR2an0 for metastability of the
superfluid flow.) In principle, all four �p values in Eq. (41) can
be measured in one experimental system by using a Feshbach
resonance [30] to tune a. All measurements need to be taken
at the same values for 	R , ��, and �∗. One should take the
limit �∗ → 0, analogous to ω → 0 in the definition (1).

As described in Sec. IV, all higher-order corrections vanish
for 	R → ∞, so in this limit the definition (1) coincides with
the spectroscopic definition (41). Thus, the superfluid fraction
is obtained from the spectroscopic signal (41) by taking the
limit

ρs

ρ
≡ lim

	R→∞

(
ρ

spec
s

ρ

)
. (42)

Evaluating Eq. (41) at different values of 	R gives a way to
assess the influence of nonparabolic corrections. Furthermore,
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this offers the possibility of improving the measurement by
extrapolating to 	R → ∞.

To analyze the quantitative accuracy of this method, we
at first keep T = 0, that is, we consider the accuracy of the
method for the case of a perfect superfluid where we know
that 〈�〉 = 0 (or �∗ in the relaxed SF). We wish to show
that at an interaction strength where the BEC is reasonably
depleted (e.g., nex/n ∼ 0.1) the 100% superfluidity is still
recovered by the spectroscopic method. The numerical results
are shown in Fig. 7, as a function of increasing dimensionless
interaction strength na3 while keeping the density n fixed.
Figure 7(a) shows the raw �p results for the relaxed (�pRSF)
and metastable (�pSF) superfluids. Figure 7(b) shows the
resulting spectroscopically determined superfluid fraction,
from Eq. (41), using na3 = 10−7 to represent na3 ≈ 0. For
comparison, in Fig. 7(b) the dashed line shows the numerically
determined condensate fraction n0/n for the SF [31]. The
departure of the spectroscopic measurement of the superfluid

(a)

(b)

FIG. 7. (Color online) Quantitative analysis of interaction effects
at zero temperature: (a) raw �p signal; (b) spectroscopically
determined superfluid fraction ρspec

s /ρ, and comparison with the
condensate fraction n0/n. Note that the condensate depletion is
significantly higher than the deviation of ρspec

s /ρ from 1. The curves
are labeled from top to bottom.

fraction from 1 [the solid lines in Fig. 7(b)] shows that the error
in determining the superfluid fraction by the spectroscopic
method increases with interaction strength. However, this error
is much smaller than the excited fraction nex/n. Therefore,
the spectroscopic method allows one to distinguish clearly
between the condensate fraction and the superfluid fraction in
a strongly interacting BEC.

C. Optimal experimental parameters

In the preceding sections we have shown that the spec-
troscopic method is capable of providing both a qualitative
signature of superfluidity and a quantitatively accurate way to
measure the superfluid fraction. We now turn to discuss the
experimental parameters to use to optimize this technique as a
quantitative measurement of superfluid fraction.

As was discussed in Sec. IV, there is a trade-off between
the signal size and the quantitative accuracy of the method. In
particular, we showed that it is advantageous to have as large
a value of �� as possible, and then to increase 	R as much as
possible to improve accuracy, but not so much as to make the
signal �p too small. From these considerations we were led to
choose �� = 50 (from practical considerations of achieving
beams of high angular momentum), and we settled on a com-
promise value of 	R = 2π × 100 kHz. However, there still
remains the question of what is the best detuning δ (and there-
fore value of �∗) to use. Formally, following Eq. (8) we should
consider the limit �∗ → 0, such that the superfluid remains
metastable even very close to Tc. But in this limit the signal
becomes very small. What is a reasonable value of �∗ to use?

To explore this question, in Fig. 8 we present the results of
calculations at zero temperature and na3 = 10−2, correspond-
ing to a condensate depletion of about 12%.

In Fig. 8 the diamonds show the signal strength, as given
by �p′�∗. This is the ideal difference between the signals of a

FIG. 8. (Color online) Trade-off between signal size and accuracy
at zero temperature. Signal size is assumed to be given by �p′�∗;
compare Fig. 4. Accuracy is determined by the deviation of the
spectroscopic measurement (41) from the expected unity. This
deviation has been calculated at na3 = 10−2 (corresponding to a
condensate depletion nex/n ≈ 12%), amounting to a vertical slice
through Fig. 7(b) at na3 = 10−2.
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FIG. 9. (Color online) Comparison of ρspec
s /ρ and ρs/ρ = 1 −

〈�〉/�∗ at na3 = 10−2 as a function of temperature (in terms of the
ideal Bose gas transition temperature Tc ≈ 31.1 kHz). As in Fig. 6,
the curves break off for |�∗| > �∗

crit � √
4πR2an0. At the left-hand

edge of the graph, each curve starts at the y value corresponding to
the one in Fig. 7(b) at na3 = 10−2. The curves are labeled in this
order from top to bottom.

normal fluid and a superfluid at T = 0, neglecting higher-order
corrections to �p�. As in Fig. 4(c), this is a good approximation
to the actual signal. These results show that, for the parameters
chosen, the fractional imbalance �p must be measured to an
accuracy of about 0.01 to 0.05. While this is a small fractional
imbalance, it should be feasible to detect signals of this size
by averaging over many shots.

The circles in Fig. 8 display the inaccuracy in the spectro-
scopic measurement of the superfluid fraction (i.e., the relative
deviation of ρ

spec
s /ρ from the expected value of 1 at T = 0).

Hence the circles in Fig. 8 correspond to a vertical slice through
Fig. 7(b) at na3 = 10−2. Here, an inaccuracy of 0.03 means
that a 100% superfluid would be misinterpreted as only having
97% superfluid fraction. In contrast, recall that the condensate
fraction is about 88%. So this still allows a clear distinction
between the superfluid and condensate fraction.

The results in Fig. 8 would suggest picking |�∗| ≈ 35, where
the inaccuracy passes through zero. However, one should
note that these results only show the inaccuracy at zero
temperature. In Fig. 9 we plot the ratio ρ

spec
s /ρs as a function

of temperature. Here ρ
spec
s is the spectroscopically measured

superfluid density and ρs is the expected superfluid density,
as computed from the usual definition of superfluidity (1),

ρs/ρ = 1 − 〈�〉/�∗. The ratio stays close to 1 over a wide
temperature range, showing that the spectroscopic method
provides a good measure of the superfluid fraction.

Combining the issue of signal size and accuracy over a range
of temperatures, we find that (for the parameters studied) a
good choice is |�∗| between 20 and 30. In this range, the signal
size is approximately 0.05; the spectroscopically measured
superfluid fraction is accurate to about 0.02 (much less than
the depleted fraction of 0.12); the accuracy remains at this
level up to about 0.9Tc.

VII. SUMMARY

In summary, we have assessed the feasibility of a recent
proposal [10] to measure the superfluid fraction of atomic
BECs. This proposal involves the use of optically induced
gauge fields to simulate rotation, and allows the superfluid
response to appear in a spectroscopic signal. We have
calculated the expected spectroscopic signatures for three-
dimensional BECs with uniform density. One conclusion
of our studies is the demonstration that this technique can
be used to obtain a qualitative experimental signature of
the superfluid response (by comparing the spectroscopic
signals when the order of turning on the gauge field and
cooling the gas is reversed), with a spectroscopic sig-
nal that is large enough to be detectable in an experi-
ment. Furthermore, and most importantly, we have shown
that the technique can be used to extract a quantitative
measurement of the superfluid density. The accuracy of
the measurement technique can be improved at the expense
of the size of the signal. Using realistic values for the
experimental parameters, we have shown that a compromise
can be reached where both (i) the signal is sufficiently large
to be feasibly measured and (ii) the superfluid density is
determined to sufficient accuracy to allow quantitatively useful
information to be extracted. Notably, our results show that
the technique can allow a clear experimental measurement of
the distinction between the condensate and superfluid fraction
of a strongly interacting Bose gas. Our results support the
usefulness of this technique [10] for measuring the superfluid
fraction, and provide guidance for the parameters required in
future experimental implementations.
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