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Abstract

This thesis can conceptually be divided into two sections. In the first, consisting

of chapters 2 and 3, I describe the design and construction of an experimental

system for the production of ultracold Bose condensed gases of the isotopes 39K

and 87Rb. We work with 39K primarily due to the existence of a very broad

Feshbach scattering resonance in its absolute ground state which enables precise

and wide tuning of the s-wave scattering length. In order to cool 39K sufficiently

it is sympathetically cooled by 87Rb while held in a magnetic trapping potential,

after which both species are transferred to a purely optical trap. The 87Rb is

removed from the trap and the remaining 39K is evaporated further by gradual

lowering of the trap depth. We produce quasi-pure 39K condensates containing

over 4 × 105 atoms. The same apparatus can also produce 87Rb condensates of

over 8× 105 atoms.

The second part of the thesis, consisting of the chapters 4 and 5, describes ex-

periments aimed at addressing the influence of interparticle interactions on the

thermodynamics of ultracold Bose gases. Firstly, we investigate the saturation

of excited states as the driving mechanism behind Bose-Einstein condensation,

in accordance with Einstein’s original description. We find that real, interacting

gases deviate more strongly from this picture than predicted by simple mean-field

theories. Extrapolation to the non-interacting limit, however, allows us to recover

Einstein’s picture. Secondly, we investigate the effect of interaction strength on

the shift of the condensation critical point from its ideal-gas value. We reveal

for the first time the beyond-mean-field corrections to this quantity, in quali-

tative agreement with the most recent theoretical predictions, and also observe

non-equilibrium effects in the regime of very weak and very strong interactions.
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“In the eighteenth century it was often convenient to regard man as a

clockwork automaton. In the nineteenth century, with Newtonian physics

pretty well assimilated and a lot of work in thermodynamics going on, man

was looked on as a heat engine, about 40 per cent efficient. Now in the

twentieth century, with nuclear and subatomic physics a going thing, man

had become something which absorbs X-rays, gamma rays and neutrons.”

Thomas Pynchon (b. 1937), V.





1
Introduction

“The general public has long been divided

into two parts; those who think that science

can do anything and those who are afraid it

will.”
Thomas Pynchon, Mason & Dixon

1.1 Background

The basic dichotomy of the elementary particles of nature by now requires

little retelling: fermions, the fundamental constituents of matter possessing

half-integer spin, are prohibited from simultaneously occupying the same quan-

tum state while bosons - elementary or composite particles possessing integer

spin - are sociable and prefer to aggregate in the same state. In this thesis we

concern ourselves only with the latter class of particles and can encapsulate the

aims of the reported experiments as exploring the consequences of inter-particle

interactions on different aspects of their gregarious behaviour.
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2 Introduction

Central to the understanding of the properties of bosonic systems1 is the concept

of the Bose-Einstein condensation (BEC) phase transition, which occurs when the

wave-like nature of indistinguishable particles begins to dominate their behaviour.

In this “quantum-degenerate” regime, a macroscopic fraction of the particles oc-

cupies the confining potential’s single-particle ground state. The BEC transition

plays a key role in the explanation of experimental signatures observed in many

disparate systems. Manifestations of this bosonic quantum degeneracy include

the behaviour of Cooper pairs in superconductors (1911) [1], the superfluid prop-

erties of 4He (1938) [2, 3, 4, 5, 6] and 3He (1972) [7, 8, 9], the condensation of

magnons in antiferromagnets (2000) and ferrimagnets (2006) [10, 11], fermionic

pair condensates in dilute Fermi gases (2004) [12] and condensation of microcavity

polaritons (2006) [13, 14].

Perhaps the most striking and clear demonstration of this phenomenon, however,

has been provided by the field of ultracold atomic Bose gases. This burgeon-

ing field with its newly-developed experimental techniques, recognized by the

Physics Nobel prizes of 1997, 2001 and 2005 [15, 16, 17], has provided the means

for cooling trapped atomic ensembles down to unprecedented temperatures - on

the order of tens of nanokelvin - allowing us to perform extremely sensitive mea-

surements on the quantum nature of these versatile and highly-controllable sys-

tems. Magnetic trapping of neutral atoms was first reported in [18] and the first

demonstration of the magneto-optical trap was reported two years later [19]. The

concurrent introduction and development of evaporative cooling [20, 21, 22] lead

to the first experimental observations of BEC in dilute atomic Bose gases in 1995

[23, 24, 25] and quantum degeneracy in fermi gases a few years later [26, 27]. To

date, fifteen atomic species have been condensed in ultracold atom groups around

the world (see table 1.1).

1995 1995 1995 1998 2000 2001
87Rb [23] 23Na [24] 7Li [25] H [28] 85Rb [29] 4He∗ [30, 31]

2001 2003 2003 2005 2007 2009
41K [32] 133Cs [33] 174Yb [34] 52Cr [35] 39K [36] 40Ca [37]

2009 2010 2011
84Sr [38, 39] 86Sr [40] 164Dy [41]

Table 1.1: Atomic species to have been condensed at the time of writing.

1 An even number of constituent elementary fermions (electrons, protons, neutrons) makes
an atom bosonic, while an odd number make it a fermion.
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Our understanding of these systems’ properties has grown in parallel with our

experimental ability to manipulate their external and internal degrees of freedom.

Novel magnetic and optical trapping methods enable samples to be loaded into

periodic, lower-dimensional and dynamically reconfigureable potentials, while the

discovery of Feshbach scattering resonances [42] has provided the ability to tune

the strength and nature of interatomic interactions. This has enabled investi-

gation of the delicate interplay between interparticle interactions and external

potentials in determining the thermodynamic behaviour of these systems. Ex-

periment and theory continue to yield valuable insights into the underlying many-

body physical effects as well as opening the way to new technological applications

of these systems in fields such as high-precision metrology and quantum informa-

tion processing. Reviews of the history of this field can be found in [43, 44] and

a discussion of more recent experimental and theoretical results can be found in

[45, 46].

The experiments described in this thesis investigate the effects of interactions

on the thermodynamic behaviour of a Bose gas, both well within the regime of

quantum degeneracy (chapter 4) as well as on its threshold (chapter 5). Below

is a summary of the relevant temperature, density and length scales as well as a

discussion of our motivations for working with 39K. This is intended to serve as

an overview, with the technical elements introduced here to be explained more

rigorously in chapters 2 and 3.

1.2 Temperature, density and length scales

Broadly speaking, the effects of quantum statistics become significant when the

number of thermally accessible states becomes comparable to the number of par-

ticles in the system, such that the average occupancy of a state below the sys-

tem’s thermal energy becomes of order one. In terms of macroscopic parameters,

namely temperature and number density, the onset of quantum degeneracy occurs

when the characteristic spatial extension of a particle, as given by its thermal de

Broglie wavelength

λdB =
h√

2πmkBT
(1.1)

becomes comparable to the mean inter-particle spacing ` ∼ n−1/3, where n is the

particle number density, h is Planck’s constant, m is the mass, kB is Boltzmann’s

constant and T is the temperature.



4 Introduction

This is quantified by the phase-space density of the gas

ρ = nλ3
dB (1.2)

which measures the number of particles within a ‘de Broglie volume’, λ3
dB.

BEC therefore occurs when ρ ∼ 1. A property shared by all cold-atom

experiments is the extreme diluteness of the trapped samples, which is required

in order to keep them in their metastable, weakly-interacting, gaseous phase.

The weak-interactions also make the system more amenable to theoretical

treatment, which is otherwise complicated by the strong interactions present

in solids or quantum liquids such as the helium superfluids. Densities on the

order of 1013cm−3 - roughly ten orders of magnitude below those of a typical

solid - are required in order to avoid prohibitive molecule formation rates via

three-body recombination. Table 1.2 shows some typical densities for comparison.

nucleus white dwarf lead water air BEC

1038cm−3 1030cm−3 1023cm−3 1022cm−3 1019cm−3 1013 − 1015cm−3

Table 1.2: Typical number densities of some materials in comparison to those at
the centre of a BEC.

As an example, a cloud of 106 87Rb atoms held in a harmonic potential of fre-

quency ω/2π = 100Hz at T = 100µK has a phase-space density of ρ ∼ 10−7 and

a thermal radius of RT ≈ 50µm. The same cloud at T = 1µK has ρ ≈ 0.1 and

RT ≈ 15µm. The BEC transition temperature for the above cloud occurs around

Tc ≈ 450nK. Typical trapped samples contain between 103 and 107 atoms and

have an experimental trap lifetime in the range 1-100s. Section 2.7 discusses the

BEC transition in more detail.

1.3 Why 39K?

A relative newcomer to the condensate family, 39K was condensed for the first time

in 2007 [36] in the LENS1 group in Florence following several years of pioneering

studies by this and other groups into the collisional properties of this isotope and

its suitability for BEC experiments [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60]. The fermionic isotope 40K was first cooled to degeneracy in 1999 by the JILA

1 European Laboratory for Non-Linear Spectroscopy
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group [26], while the other bosonic potassium isotope, 41K, was first condensed at

LENS in 2001 [32]. Amongst other findings, it was demonstrated that 87Rb was

well suited to act as a refrigerant for sympathetic cooling of 39K and 41K [32, 59].

The existence and properties of multiple Feshbach scattering resonances in 39K

were predicted and observed [60] and several interspecies 39K-87Rb and 41K-87Rb

Feshbach resonances have also been found [61, 58, 36, 62].

39K is an attractive species to work with1. The existence of other bosonic and

fermionic isotopes, both of which have also been cooled to degeneracy, allow ex-

periments to be performed on ultracold Bose-Bose and Bose-Fermi mixtures in

which the two species possess almost identical masses2 [65]. 39K’s several broad

Feshbach resonances, located at moderate magnetic fields, allow fine tuning of the

s-wave scattering length over a large range, from strongly attractive to strongly

repulsive. The ability to cancel out interactions altogether enables precision atom-

interferometry experiments to be performed as well as studies on phenomena such

as Anderson localization [66, 67]. 39K’s negative background scattering length,

which constitutes a significant hurdle on the route to BEC, can be utilized in

experiments on the effects of attractive interactions [25, 68, 69, 70, 71]. From a

technical point of view, its well-understood level structure, high natural abun-

dance (93.26%) and the availability of commercial laser systems at the relevant

wavelengths also add to its appeal.

Working with this isotope poses several difficulties, however. Chief amongst these

are (1) the inefficiency of conventional laser cooling mechanisms due to 39K’s un-

resolved excited-state hyperfine structure, (2) the relative inefficiency of evapora-

tive cooling due to the small background scattering length and (3) the instability

of 39K BEC resulting from the attractive nature of this background interaction

strength. The first of these is overcome by careful choice of laser frequencies, the

second by performing sympathetic cooling with 87Rb and the third by harness-

ing a Feshbach resonance to change the interaction strength from attractive to

repulsive. These problems and the measures for overcoming them are described

in detail in chapters 2 and 3.

1 No pun intended.
2 The only other species-pairs for which this has been achieved are 7Li-6Li [63] and 84Sr-87Sr

[64].
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1.4 Thesis outline

The remainder of this thesis is structured as follows:

• Chapter 2 provides some theoretical background to the various techniques

and phenomena utilized in the production and manipulation of ultracold

atomic gases.

• Chapter 3 describes the design, assembly and performance of our apparatus

for producing ultracold dual-species 87Rb-39K clouds.

• Chapter 4 discusses experiments in which a condensed 39K gas with tune-

able interaction strength was used to investigate the role of excited-state

saturation as the driving mechanism behind the Bose-Einstein condensation

transition in a non-interacting gas.

• Chapter 5 describes our measurements of the interaction-shift in the BEC

critical point. We observe the hitherto unseen beyond-mean-field effects on

the shift in the critical temperature in addition to non-equilibrium effects

in the regimes of very-weak and very-strong interaction strengths.

• In chapter 6 we summarize our results and mention possible directions for

future work.

Appendicies

The appendices at the end of this thesis include additional information that did

not find a place in the main text but that may prove useful to others working on

similar experiments. This includes

1. A summary of the relevant optical and physical properties of both 87Rb and
39K (appendix A).

2. A description of a compact system for rapid production of 87Rb BECs as-

sembled to provide a convenient platform for proof-of-principle experiments

and testing of components (appendix B).

3. Experimentation with the use of a Spatial Light Modulator (SLM) for gen-

eration of Laguerre-Gauss beams, arbitrary optical potentials and dynamic

control of trapping potentials (appendix C).

4. Information on the dimensions and anti-reflection (AR) coatings of the

MOT chamber and the science cell (appendix D).
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5. The formulae used for calculation of the magnetic fields generated by our

various magnet coils (appendix E).

6. Preliminary results for the design and testing of a setup for producing

tightly-confining optical potentials for future studies of two-dimensional

Bose gases with tuneable interactions (appendix F).
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Publications arising from this work

• The results described in chapter 3 are summarized in:

1. Efficient Production of Large 39K Bose-Einstein Condensates.

R. L. D. Campbell, R. P. Smith, N. Tammuz, S. Beattie, S. Moulder, and Z.

Hadzibabic, Phys. Rev. A 82, 063611 (2010)

• The results of chapter 4 on the role of saturation in BEC were published in:

2. Can a Bose gas be saturated?

N. Tammuz, R. P. Smith, R. L. D. Campbell, S. Beattie, S. Moulder, J. Dalibard

and Z. Hadzibabic, Phys. Rev. Lett. 106, 230401 (2011)

• Our measurements of the interaction shift in the BEC critical point, as de-

scribed in chapter 5, appear in:

3. Effects of Interactions on the Critical Temperature of a Trapped Bose Gas.

R. P. Smith, R. L. D. Campbell, N. Tammuz, and Z. Hadzibabic, Phys. Rev.

Lett. 106, 250403 (2011)

• Analysis of beyond-mean-field contributions to the condensed fraction were

published in:

4. Condensed Fraction of an Atomic Bose Gas Induced by Critical Correlations.

R. P. Smith, N. Tammuz, R. L. D. Campbell, M. Holzmann, and Z. Hadzibabic,

Phys. Rev. Lett. 107, 190403 (2011)



2
Theoretical background

“Why should things be easy to understand?”

Thomas Pynchon, quoted in Playboy (March 1977)

Abstract

This chapter summarizes some of the theory underlying the various stages in the

production and manipulation of our ultracold 39K and 87Rb gases. In the interests

of conceptual clarity and convenient browsing, the chapter is structured so as to

roughly correspond to the progression of the experimental procedure used to create

the degenerate and quasi-degenerate clouds which constitute the starting point

for our investigations. We discuss the principles behind (i) laser cooling and

trapping, (ii) magnetic trapping, (iii) evaporative cooling, (iv) optical trapping,

(v) Feshbach scattering resonances, (vi) the properties of thermal and condensed

atomic clouds and (v) absorption imaging.

9



10 Theoretical background

2.1 Laser cooling and trapping

Laser cooling and magneto-optical trapping have established themselves as the

starting point of virtually every single ultracold atom experiment conducted to-

day. The use of laser light for cooling and trapping atoms enjoys a rich and

distinguished history, including the award of the 1997 Nobel prize in Physics

[72, 73, 74] for development of the related experimental methods and theoretical

understanding. However, the mechanical effects of radiation on matter particles

had been hypothesized and investigated long before the first proposals and exper-

iments harnessing these effects to cool atoms were carried out in the mid 1970’s.

Table 2.1 presents a chronology of milestones related to these theoretical and

experimental studies.

Year Name Contribution

1619 Keppler

In 1619 treatise, “De Cometis”, hypothesises that the

deflection of comet tails away from the sun is a conse-

quence of pressure exerted by solar rays.

1873 Maxwell

In “Treatise on Electricity and Magnetism”[75],

showed that radiation pressure is equal to energy den-

sity of electromagnetic wave.

1876 Bartoli

Derived,from arguments based on 2nd law of thermo-

dynamics, radiation pressure equal to that calculated

by Maxwell [76, 77].

1901 Lebedev
First measurement of light pressure on a solid body

using container of water and torsional balance [78].

1901-3
Nichols &

Hull

Use the torsional Nichols radiometer to measure radi-

ation pressure [79, 80].

1909 Einstein

In [81], showed that Planck’s black-body formula im-

plied that light quanta also carried quantized momen-

tum p = h/λ.

1933 Frisch
Observed defection of a beam of sodium atoms by light

resonant with a sodium energy level transition [82].

1975
Hänsch &

Schawlow
Proposed using laser for cooling of neutral atoms [83].

1975
Wineland &

Dehmelt
Proposed laser cooling of trapped ions [84].
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1978 Ashkin

Proposed “a method of stably trapping, cooling, and

manipulating atoms on a continuous-wave basis...using

resonance radiation pressure forces” [85].

1978
Neuhauser

et al.
Laser cooling of trapped ions to a few millikelvin [86].

1981-2

Andreyev /

Phillips &

Metcalf

Cooling of Na beams with laser light [87, 88]

1997

Chu,

Phillips &

C.-Tannoudji

Nobel prize “for development of methods to cool and

trap atoms with laser light.” [74, 72, 73]

Table 2.1: Milestones in the understanding of the mechanical effects of light on
matter.

The fields of atomic spectroscopy and atom clocks have also benefited hugely from

the reduced Doppler shifts and increased interaction times afforded by magneto-

optical traps (MOTs), in which many different atomic species can be cooled with

relative ease to temperatures on the order of 100µK. The physics governing laser

cooling and the operation of MOTs has been presented and scrutinized in many

excellent books [89, 90, 91], review articles [72, 73, 74, 92], research papers and

theses. Here we provide a brief review of the main operating principles responsible

for the laser cooling and trapping of atoms from a background vapour in our

double-species 39K-87Rb MOT. The basic theory is discussed in the context of a

two-level system and in subsection 2.1.4 we discuss how well this approximation

is realised in practice for our atomic species.

2.1.1 Atom-light interactions

The total force acting on atoms as a results of their interaction with an elec-

tromagnetic field is the result of three distinct processes taking place during the

interaction. These are the absorption, spontaneous emission and stimulated emis-

sion of photons from the radiation field. The contribution of the first two of these

is usually called the scattering or radiation force and the dispersive force aris-

ing from the third process is called the dipole force. These two components are

often treated separately and in ultracold atom experiments typically play very

distinct roles in the cooling and manipulation of trapped clouds. Laser cooling
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and trapping constitute the first stage of the experimental sequence and rely on

the scattering force, as described in 2.1.2 and 2.1.3. Optical trapping using the

dipole force is utilized during the final part of the experiment, where its tight con-

finement and state-independent nature make it convenient for use in conjunction

with evaporative cooling and Feshbach resonances, respectively. Here we outline

a derivation, along the lines presented in [89], of the force resulting from the

interaction between a two-level system and a plane-wave electric field along one

spatial dimension, z. For an atom, this force arises from the interaction between

the field and the dipole moment, −er, it induces in the atom. The Hamiltonian

for the energy of a dipole in an electric field is

H = −eE(r, t) · r (2.1)

where E(r, t) is the electric field operator and er is the dipole moment operator.

The force along the z-direction can be found using the Ehrenfest theorem as

Fz = −
〈
∂H
∂z

〉
= e

〈
∂

∂z
(E(r, t) · r)

〉
(2.2)

Using the dipole approximation, which assumes a constant value of the electric

field across the dipole (i.e. λ� |r|), we can exchange the order of the derivative

and the expectation value such that

Fz = e
∂

∂z
(〈E(r, t) · r〉) (2.3)

Since the atom has no dipole moment when in an energy eigenstate (i.e. 〈g|r|g〉 =

〈e|r|e〉 = 0), the dipole operator can be written as r = reg|e〉〈g| + r∗eg|g〉〈e| =

regρeg + r∗egρ
∗
eg, where ρeg is the off-diagonal element of the density matrix ρ =

|Ψ〉〈Ψ|. The electric field operator is given by E(r, t) = E0 cos(ωt−k · r) and the

definition of the Rabi frequency is

Ω ≡ −eE0

~
〈e|r|g〉︸ ︷︷ ︸
≡X12

(2.4)

where we have defined X12 ≡ 〈e|r|g〉. The force of equation 2.3 can then be

written as

Fz = ~
(
∂Ω

∂z
ρ∗eg +

∂Ω∗

∂z
ρeg

)
(2.5)
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where in obtaining equation 2.5, the rotating-wave approximation (RWA), which

assumes a near resonant field such that δ ≡ ωL − ω0 � ωL + ω0, has been used.

Splitting the derivative of the Rabi frequency into its real and imaginary parts

according to
∂Ω

∂z
= (qr + iqi)Ω (2.6)

reduces equation 2.5 to

Fz = ~qr(Ωρ∗eg + Ω∗ρeg) + i~qi(Ωρ∗12 − Ω∗ρ12)

=
~s

1 + s

(
−δqr +

1

2
Γqi

)
(2.7)

where δ = ω − ω0 is the detuning of the field from the transition frequency and

in going from the first to the second lines of 2.7 we have inserted the expression

for ρeg obtained from the steady-state solutions of the optical Bloch equations

(OBE):

ρ12 =
iΩ

2(Γ/2− iδ)(1 + s)
(2.8)

in which the saturation parameter, s, is given by

s ≡ s0

1 + (2δ/Γ)2
(2.9)

with

s0 ≡
2Ω2

Γ2
=

I

IS
and IS ≡

πhc

3λ3
0τ

(2.10)

with c the speed of light, λ0 the resonance wavelength and τ = Γ−1 the transition

lifetime. The above expression for the saturation intensity, IS, can be found

using Einstein’s A and B coefficients and the intensity, I is related to the peak

field value E0 via: I = ε0cE
2
0/2. Within the RWA, the field can be written as

E(r, t) = E0 exp(−i(ωt− k · r)). Inserting this expression into equation 2.6 and

using the definition 2.4, we obtain

∂Ω

∂z
=
e

~
X12

∂E0

∂z
e−i(ωt−k·r) + i

e

~
kzX12e

−i(ωt−k·r)

=
1

2s0

∂s0

∂z︸ ︷︷ ︸
qr

Ω + i k︸︷︷︸
qi

Ω (2.11)

where we have also made use of equation 2.10. Inserting these values of qr and qi
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into equation 2.7, yields the total force, which can be generalized to three spatial

dimensions by replacing the partial derivative with a gradient. This results in

the following expression for the total force

F = −~δ
2
· ∇(I/IS)

1 + I/IS + (2δ/Γ)2︸ ︷︷ ︸
Dipole force: ∝∇I

+

Scattering rate: Rscatt=Γρ22

~k

︷ ︸︸ ︷
Γ

2
· I/IS

1 + I/IS + (2δ/Γ)2︸ ︷︷ ︸
Scattering Force: ∝ I

= Fdip + Fscatt (2.12)

The first term on the right-hand side of equation 2.12 is the dipole force. It is

proportional to the gradient of the field intensity and is the result of the refraction

of light by the atom. For large detunings, such that |δ| � Γ, the dipole force

reduces to the derivative of the light shift due to the a.c. Stark shift obtained

using time-dependent perturbation theory

Fdip = −∇Udip ' −∇
(
~Ω2

4δ

)
(2.13)

In a non-homogeneous field, the difference in intensity across the atom results in

a net force, whose direction is dictated by the field’s detuning from the atomic

resonance, as can be seen in equation 2.12: a red-detuned field (δ < 0) gives rise

to an ‘attractive’ force in the direction of highest intensity, while a blue-detuned

field (δ > 0) ‘repels’ atoms towards the region of lowest intensity. The dipole

force vanishes on resonance (δ = 0).

The second term in equation 2.12 is the scattering force. It arises from absorption

of photons from the incident field and its form can equally be derived by consid-

ering that the force is equal to the rate of change of momentum. The momentum

imparted by a single photon of wavevector k is p = ~k and the rate at which

such photons are absorbed is given by Rscatt = Γρ22 where ρ22 is the excited-state

population, given by ρ22 = (1− w)/2, with w the third component of the Bloch

vector whose steady state value for a two-level system is1

uv
w

 =
1

δ2 + Ω2/2 + Γ2/4

 Ωδ

ΩΓ/2

δ2 + Γ2/4

 (2.14)

1 this result assumes the RWA.
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The force is simply equal to the momentum transfer times the scattering rate:

Fscatt = ~kRscatt, which reproduces the second term in equation 2.12.

The following two subsections discuss the use of the scattering force for laser cool-

ing and trapping of atoms. Broadly speaking, trapping in position-space requires

a spatially-dependent restoring force and trapping in momentum-space requires

a velocity-dependent restoring force. In a MOT, these are generated by engi-

neering the space- and velocity-dependence of quasi-resonant photon scattering

from an incident laser beam. Below we first discuss the case of a purely velocity-

dependent force (‘Doppler cooling’), followed by the case of combined velocity-

and spatially-dependent force (‘magneto-optical trapping’).

2.1.2 Doppler cooling

As discussed above, laser cooling relies on the momentum imparted to the atom

during repeated stimulated-absorption/spontaneous emission cycles. Each ab-

sorption event results in the transfer of the photon’s linear momentum, ~k, en-

ergy ~ω and angular momentum ~, to the atom, together with its promotion to

a higher-lying energy state. The recoil from the subsequent spontaneous photon

emission occurs isotropically and hence averages to zero over many absorption-

emission cycles. As a result, a net force acts on the atom in the direction of the

light propagation and with a magnitude given by the single-photon momentum

recoil, ~k, multiplied by the photon scattering rate, Rscatt, as given by equation

2.12. The dipole force is negligible compared to the scattering force in this case

since relatively small detunings are used, δ ∼ Γ and the characteristic distance

over which the beam intensity varies is large compared with the wavelength (i.e.

kΓI � δ∇I). The velocity-dependence of this force arises from the Doppler effect

which causes an atom in motion with velocity v to experience a laser detuning

given by k · v. The effect, which has also given its name to this cooling method,

therefore results in a combined detuning of

δ±Dopp = δ ∓ kv (2.15)

when the atoms are moving towards or away from the incident laser beam with

velocity v, respectively. In order to see how the scattering force of equation 2.12

can be used to cool atoms, consider now two counter-propagating laser beams

of intensity I and frequency ω. Each of these beams exerts a force on an atom

moving with velocity v according to equation 2.12 using the detunings of equation
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2.15, resulting in a total force given by

FTOT(v) = F+ + F−

= ~k
Γ

2

I

IS

[
1

1 + I/IS +
(
2δ+

Dopp/Γ
)2 −

1

1 + I/IS +
(
2δ−Dopp/Γ

)2

]
(2.16)

where the relative minus sign comes from the counterpropagating wavevectors.

To see the velocity dependence more clearly, we consider the small-velocity limit

v � δ/k and expand equation 2.16 to first order in v:

FTOT(v) ≈ 4~k2 (I/IS) (2δ/Γ)

[1 + I/IS + (2δ/Γ)2]2
v ≡ −βv (2.17)

When the laser is red-detuned (δ < 0), this has the form of a viscous damping

force, acting to oppose the atom’s motion and hence slowing it down, with the

analogy of movement through a viscous medium leading to the adoption of the

name optical molasses for this beam configuration. Figure 2.1 shows the form of
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Figure 2.1: Acceleration due to scattering force in a 1D MOT plotted against
atomic velocity. Curves are plotted for 87Rb with I/IS = 1 and for different
laser detunings. From the innermost to the outermost curves, the detunings are:
-0.1Γ,-0.3Γ,-0.5Γ,-Γ,-2Γ,-3Γ. The red dashed lines show the separate components
of the force arising from each of the two counter-propagating beams for the case of
δ = −Γ.
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this force as a function of atom velocity for various values of the (zero-velocity)

beam detuning, δ. The molasses laser configuration can be extended in order

to provide a viscous force along all three spatial directions by adding two more

counter-propagating beam pairs, orthogonal to each other and to the first pair

(i.e. six beams in total).

The Doppler limit

The Doppler limit represents the point at which Doppler cooling is balanced by

the heating resulting from the discrete recoil events associated with the absorption

and spontaneous emission from the laser beams. The light field of a single beam

transfers an energy of 2~ωr to an atom with each scattering event, where ~ωr =

~2k2/2m is the recoil energy, and does so at a rate of 2Rscatt, with the factor of two

accounting for the two counter-propagating beams and assuming no saturation of

the transition (i.e. I/IS � 1). The heating rate is therefore 4~ωrRscatt. Equating

this to the cooling rate FTOT · vx, with FTOT given by equation 2.16, gives the

steady-state kinetic energy

1

2
mv2

x = −~Γ

8

(
2δ

Γ
+

Γ

2δ

)
(2.18)

Equating this to 1
2
kBT and minimizing with respect to the detuning, δ, yields the

Doppler temperature

TD =
~Γ

2kB

(2.19)

obtained when δ = −Γ/2. The Doppler temperatures for the transitions used

in the cooling of 87Rb and 39K (see subsection 2.1.4) are 146µK and 145µK,

respectively, corresponding to velocities, vD =
√
kBTD/m, of 12cm/s and 18cm/s.

Sub-Doppler cooling and the recoil limit

Temperatures below the Doppler limit can be obtained in optical molasses [93],

most notably via the mechanism known as Sisyphus cooling [94, 95, 96, 97]. Sub-

Doppler cooling relies on the existence of magnetic sublevels in the atomic ground

state1, which were omitted from the discussion above. Figure 2.2 illustrates this

mechanism in a simplified system consisting of a J = 1/2 ground state and a

J ′ = 3/2 excited state.

1 For example the mF sublevels of the hyperfine states - see subsection 2.1.4.
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Figure 2.2: Illustration of the polarization-gradient (Sisyphus) cooling mechanism
in the lin ⊥ lin configuration. An atom in the MJ = +1/2 state at x = 0 moves
along its potential curve until it reaches x = λ/4, at which the polarization is
σ− circularly polarized. The atom is excited to the |J ′ = 3/2,MJ = −1/2〉 state
and decays preferentially down to the |J = 1/2,MJ = −1/2〉 state via spontaneous
emission before the atom has moved a significant distance. The atom in the MJ =
−1/2 state finds itself in a potential minimum and loses energy as it scales the
potential landscape until it gets pumped back into MJ = 1/2 at x = λ/2, where
the polarization is σ+-polarized.

In brief, the periodic polarization gradients that arise from the interference of

counter-propagating MOT beams of different polarizations1 cause a spatially-

periodic modulation of the energies of the magnetic sublevels. This periodic

potential is out of phase for different sublevels, with the maxima of one level

coinciding with the minima of another. There follows a process of continuous

back-and-forth optical pumping between the sublevels, with atoms at a poten-

tial peak absorbing a circularly-polarized photon and spontaneously emitting a

higher-energy photon in order to decay to a lower-lying sublevel. The atom in

this lower sublevel then continues moving until it reaches the next maximum in

its potential and gets transferred back to the original state, which is now the

lower-lying of the two. The name given to this mechanism refers to the fact that

the atom continually finds itself ascending the potential landscape, only to be

1 Most examples consider two beams linearly-polarized along orthogonal directions (the lin
⊥ lin configuration) but the effect is also present for two circularly-polarized beams of
opposing handedness (the σ+ − σ− configuration).
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quasi-instantaneously transferred to a neighbouring potential minimum in order

to repeat the process.

The limit of this mechanism is reached when the atom’s energy loss in being

transferred to the potential minimum, proportional to I/ |δ|1, is balanced by the

recoil energy it acquires during spontaneous emission. The lowest temperature

achievable in Sisyphus cooling is thus reached when this potential depth, which

is proportional to the light intensity (U0 ∝ I/|δ|), becomes equal to the kinetic

energy imparted to an atom by the spontaneous emission of a photon, the so-

called recoil energy, giving

Trec =
(~k)2

2mkB

(2.20)

The recoil temperatures for 87Rb and 39K are 180nK and 415nK, respectively.

The corresponding recoil velocities are simply found from kBTrec = 1
2
mv2

rec and

are equal to 5.88mm/s and 1.34cm/s, respectively, although in practice the light

intensity cannot be reduced indefinitely and attainable temperatures are limited

to several tens of recoil temperatures [98].

Since the velocity capture range of the sub-Doppler cooling mechanisms is signif-

icantly narrower than that of Doppler cooling, laser cooling sequences are usually

divided into two distinct stages. A typical laser cooling sequence begins with a

Doppler cooling stage, during which the detuning is on the order of the linewidth

(δ ∼ −Γ) and the intensity is on the order of IS. This provides a strong radiation

force for initial cooling and brings the temperature into the capture range for sub-

Doppler cooling. The detuning is then taken even further from resonance and the

intensity is decreased in order to obtain a temperature below the Doppler limit.

This strategy requires some modification in the case of a manifold of excited

states to which transitions may occur during optical molasses, and furthermore

is very sensitive to the proximity of these transitions to each other [99]. This is

discussed in the context of 39K in subsection 2.1.4 below while chapter 3 describes

the sequence we employ in further detail.

2.1.3 Magneto-optical trapping

Although optical molasses can cool the atomic cloud, they cannot prevent the

diffusion of atoms from the region in which the beams overlap and hence do not

constitute a trap, for which a spatially-dependent restoring force is required. In

1 See sections 2.1.1 and 2.5 for discussion of optical potentials.
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a magneto-optical trap (MOT), this spatial dependence is established by making

the laser detuning a function of the atom’s position. This is accomplished by

exploiting the Zeeman shifts of the atom’s different magnetic sublevels in con-

junction with the optical selection rules.
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Figure 2.3: Illustration of the operating principle of a MOT in a J = 0, 1 system.
A magnetic field gradient in conjunction with circularly polarized beams adds a
spatial dependence to the scattering force used in the molasses configuration.

Figure 2.3 illustrates the MOT mechanism in a one-dimensional two-level system

consisting of a J = 0 ground state and a J = 1 excited state, split into its three

Zeeman sublevels, mJ = −1, 0,+1, by a linearly varying magnetic field. The

two counterpropagating beams are circularly polarized in opposite senses and

red-detuned from the atomic resonance frequency. The circular polarization of

each beam is chosen such that the only transition it can induce (∆mJ = ±1 for

σ+/σ−, respectively) is brought closer to resonance by the Zeeman shift whenever

an atom moves away from the trap centre towards the beam. Helpfully, this

Zeeman shift simultaneously ensures that the transition induced by the beam of

opposite circular polarization is shifted further away from resonance and hence

does not accelerate the atom along its direction of motion. Figure 2.4 shows the

most common MOT configuration, consisting of the three orthogonal, counter-

propagating optical molasses beam pairs, intersecting midway between a pair of

anti-Helmholtz magnetic coils. The coils produce a magnetic field with a zero at

the point midway along their mutual axis and increasing linearly with position

in all directions such that its value is given by B = B′ (x, y,−2z), where B′

is the field gradient. See appendix E for a more detailed description of the field

produced by this configuration. The total detuning of each beam from the relevant
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transition is now given by

δ±MOT = δ ∓ k · v ± (geme − ggmg)
µBB

′

~
x ≡ δ ∓ k · v ± αx (2.21)

where the third term is the detuning due to the Zeeman shift, U = −µ · B,

between the two states (see section 2.3 below) and µ is the atom’s magnetic

moment (recall: µBh ∼=1.4 MHz/G). The subscripts ‘g’ and ‘e’ represent the

lower and higher states in the transition, respectively.

! + ! !

! !

+z!

+x!

+y!

! !
! +

! +

Figure 2.4: Relation between the currents generating the quadrupole field and
the beam polarizations in a MOT. The black arrows indicate current direction and
the notation on each beam indicates the type of transition it drives in the trapped
atoms (σ+/−). For this configuration, all the beams in the x and y directions are
left-circularly polarized when viewed along their propagation direction (i.e. their
polarization vector rotates anti-clockwise), whereas the beams in the z direction
are right-circularly polarized.

The total scattering force now acquires a position-dependence in addition to

the Doppler cooling velocity-dependence F (v) → F (x, v). Repeating the low-

velocity expansion of equation 2.16 but using the detunings of equation 2.21, and

also assuming a weak magnetic field, i.e., v � δ/k and B � ~δ/µB yields

F (x, v) =
4~k (I/IS) (2δ/Γ)[

1 + I/IS + (2δ/Γ)2]2 (kv + αx) ≡ −βv − κx (2.22)
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where the spring constant κ = αβ/k. The atom’s equation of motion is therefore

ẍ+ γMOTẋ+ ω2
MOTx = 0 (2.23)

This is the equation of a damped harmonic oscillator in which γMOT = β/m

and ωMOT =
√
κ/m are the damping coefficient and effective oscillation fre-

quency, respectively, with m the atomic mass. For typical MOT parameters

(δ = −Γ, I/IS = 1, B′ = 10Gcm−1), oscillation frequencies are on the order of

a few kHz while damping rates are on the order of tens of kHz. The damping

ratio ζ = β/(2
√
mκ) is therefore much greater than one and the motion is over-

damped. Any displacement of the atom within the MOT will (exponentially)

decay towards the trap centre without oscillating [100, 101].

We note that in general, the presence of the MOT’s magnetic field gradient greatly

complicates the mechanisms normally responsible for sub-Doppler cooling due to

the differential Zeeman shifts imparted to each of the magnetic sublevels. This can

be qualitatively be viewed as resulting from the competition between the Larmor

precession about the external field, and the optical pumping process which tends

to align the atomic dipole with the orientation of the electromagnetic field [102].

2.1.4 Laser cooling of 39K and 87Rb

The basic theory of laser cooling is formulated for a two-level system, and while

real atoms invariably possess a more complicated electronic level structure, the

single valence electron of the alkali metals gives rise to a relatively simple level

hierarchy which makes this family particularly convenient cooling targets. In-

deed only recently have non-alkali atomic species such as Calcium [103], Mag-

nesium [104], Strontium [103, 105], Argon [106], Krypton [106], Ytterbium [107],

Dysprosium [108, 109] and others been used in laser cooling and degenerate-gas

experiments.

Figure 2.5 shows part of the the hyperfine energy level structure for the bosonic

species used in our experiments, 87Rb and 39K. More specifically, we focus on the

D2 transition between the |L = 0, J = 1/2〉 ground state and the |L = 1, J = 3/2〉
excited state manifolds. The natural linewidths of the D2 lines in both 87Rb and
39K are approximately Γ = 2π × 6MHz, i.e. an excited state lifetime of 26ns.

In both species, the ground state is split by the hyperfine interaction into |F = 1〉
and |F = 2〉 hyperfine states and the excited state (52P3/2 for 87Rb and 42P3/2 for
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Figure 2.5: Hyperfine structure of the D2-line states in 87Rb and 39K. The total
angular momentum of each state, F = I + J, is shown together with its Landé
g-factor, gF. Red (blue) arrows indicate the cooling (repump) frequencies. The
precise values of the detunings used in our experiments are given in table 3.2.

39K) into |F ′ = 1, 2, 3〉 states. In our dual-species MOT, the role of the two-level

system for both species is played by the |F = 2〉 and |F ′ = 3〉 hyperfine states,

and it is the transition |F = 2〉 → |F ′ = 3〉 that constitutes the cycling or cool-

ing transition used during laser cooling. The saturation intensities for the D2

transitions in 87Rb and 39K are 1.67 mW cm−2[110] and 1.75 mW cm−2[111],

respectively. Chapter 3 contains a detailed description of our experimental pa-

rameters, while appendix A contains a more detailed energy-level diagram for the

two species.

The selection rule ∆F = 0,±1 implies that decay from |F ′ = 3〉 can only occur to

the |F = 2〉 state. However, the finite linewidth of all the hyperfine levels together

with the required detuning of the cooling beam mean that occasional excitation

of atoms occurs from the |F = 2〉 to the |F ′ = 2〉 state. Decay from |F ′ = 2〉 to

|F = 1〉 is then allowed and as all the atoms gradually accumulate in the |F = 1〉
state they are removed from the cycling transition and are no longer cooled. This
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pumping is countered by the so-called repump beam, which is resonantly tuned

to the |F = 1〉 → |F ′ = 2〉 transition. Atoms ‘repumped’ to |F ′ = 2〉 then have

another chance at decaying to |F = 2〉 and hence back onto the cooling cycle.

The cooling and repump transition are indicated in figure 2.5 as red and blue

arrows, respectively.

The situation in 39K is modified by the narrow, 34MHz, overall splitting of the

excited-state hyperfine manifold [49]. This unresolved level structure has two

main consequences for the laser cooling process:

1. Firstly, the unresolved excited-state gives rise to much stronger pumping

into the |F = 1〉 ground state since the probability of |F = 2〉 → |F ′ = 1, 2〉
transitions is greatly increased. This requires the use of repump light of

similar intensity to the cooling light in order to prevent accumulation of

the atoms in the |F = 1〉 state. This pumping is so frequent that the con-

tribution of the repump beam to the cooling process becomes compara-

ble to that of the cooling beam. The functional distinction between the

two is effectively blurred and the use of their original names is simply a

matter of convention. In addition, use of the same detunings as used for

other species (δ ∼ Γ), results in heating due to the blue-detuning of the

beams from the nearby hyperfine states. For this reason, it has been found

[47, 112, 49, 48, 113, 59] that the largest capture velocity is obtained with

both the cooling and repump beams red-detuned from the entire excited-

state manifold, as shown in figure 2.5.

2. Although this large detuning of both beams yields a large capture velocity1,

it does not produce an effective sub-Doppler cooling force [49] and under

normal operating conditions, the temperatures achieved during optical mo-

lasses are on the order of 1mK. In general, sub-Doppler cooling mechanisms

are only efficient when the excited-state hyperfine splitting is much larger

than the natural linewidth Γ, as in Rb, Na and Cs, or when it is smaller

than Γ, as in Sr [114, 105]. When it is on the order of Γ, as is the case for
39K and 41K, sub-Doppler cooling is impeded by heating forces or resonant

photon reabsorption [99]. It has, however, been shown both theoretically

[49, 99] and experimentally [115, 116] that sub-Doppler cooling of these

isotopes is made possible by a suitable modification of the usual cooling

strategy. Both [115] and [116] employ an initial Doppler cooling stage with

both beams detuned from the entire excited-state hyperfine manifold. This

1 Found experimentally in [47, 112] to exceed 30m/s.
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is followed by a molasses stage that in general involves a significant reduc-

tion in the cooling beam’s detuning and intensity, together with an even

larger reduction in the detuning and intensity of the repump beam. With

their respective strategies, [115] and [116] report temperatures of 34µK and

25± 3µK, respectively, for their 39K clouds.

2.2 Optical pumping

At the end of the MOT and molasses stages, the atoms are distributed between

the various |F = 2〉 Zeeman sublevels - magnetically trappable and untrappable

alike - and must be transferred into the |2, 2〉 state prior to application of the

quadrupole field in order to trap the highest possible atom number. In order

to accomplish this, a uniform magnetic guide field is initially applied in order to

define a quantization axis. It is important to ensure that this quantization field is

not strong enough to take the magnetic sublevels out of resonance with the lasers.

We use a coil pair aligned along the propagation direction of the pumping beam

in order to produce a field of several Gauss at the location of the atoms. The

atoms are then illuminated with a beam resonant with the |F = 2〉 → |F ′ = 2〉
transition and σ+-circularly-polarized with respect to the quantization axis. The

|F = 1〉 → |F ′ = 2〉 repump light also remains on during the first half of this

process.

Optical pumping relies on the fact that transitions driven by σ+-polarized light

must satisfy ∆mF = +1. i.e., in our case |2,mF 〉 → |2,mF + 1〉. From this

excited F ′ = 2 state the atom can spontaneously decay to one of the ground

states while obeying ∆mF = 0,±1, and with a probability determined by the ap-

propriate Clebsch-Gordan coefficients. The presence of the repump light ensures

that any atoms decaying to the F = 1 ground state are transferred back into

F ′ = 2 and kept on the pumping cycle. After several absorption/emission cycles,

the atoms accumulate in the |2, 2〉 state, labelled ‘stretched’ since mF is at its

maximal value and ‘dark’ since, for lack of an |mF + 1〉 state, it can no longer

interact with the pumping light.

Transfer of all the atoms into the |2, 2〉 state is not only important for maxi-

mizing the number of initially trapped atoms in the magnetic trap, but also for

limiting subsequent trap-loss collisions which reduce numbers, and cause heating.

These processes are even more critical in our case since we rely on interspecies
87Rb-39K collisions for the sympathetic cooling of 39K. If a significant fraction of
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these collisions are inelastic, sympathetic cooling will not be efficient enough to

sufficiently increase the 39K phase-space density and could prevent condensation

of the sample. Indeed, extra effort is made during evaporative cooling to actively

remove any |2, 1〉 atoms, whether initially present or subsequently created, from

the trap (see section 3.9).

The inelastic collisions most likely to cause losses from our trap are so called

hyperfine-changing collisions (HCC) of the type Rb |2, 1〉+ K |2, 2〉 → Rb |1, 1〉+
K |2, 2〉+KE , in which the 87Rb ground state hyperfine energy, 6.8GHz, is released

and divided between the kinetic energies of the two emerging atoms. The |1, 1〉
atom is anti-trapped and the |2, 2〉 atom is also ejected if its final kinetic energy

exceeds the trap depth. The same process with the species reversed can also occur

but presents a lesser threat since (a) there are far fewer 39K atoms present and

(b) the 39K ground state hyperfine splitting, 462MHz, is much smaller than that

of 87Rb (although still larger than the trap depth). The process |2, 1〉+ |2, 1〉 →
|2, 2〉 + |2, 0〉 can also occur, leading to further losses. By contrast, atoms in

stretched states do not experience such spin-exchange collisions since the total

angular momentum projection ΣmF , must be conserved in these collisions.

In addition to maximizing the number of trapped atoms and suppressing trap

losses and heating, atoms in the |2, 2〉 state experience the tightest magnetic

confinement and hence minimal contact with the transfer tube walls as well as

the highest elastic collision rate for efficient evaporative cooling.

2.3 Magnetic trapping

Magnetic traps are used in order to provide a conservative potential which does

not rely on photon absorption and hence enables atoms to ultimately be cooled to

temperatures below the recoil limit. Our atoms posses a non-zero magnetic dipole

moment and hence experience a force in the presence of an external magnetic field

gradient, which can therefore be used to generate a suitable trapping potential.

We capture our atoms in a purely magnetic trap generated by our quadrupole

coils prior to transporting them to the science cell.
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2.3.1 Energy shift in an external magnetic field

The energy shift experienced by an atom due to a static external magnetic field,

B, is given by

HB =
µB

~
(gSSz + gLLz + gIIz)Bz (2.24)

where Bz is the component of the field along the z (quantization) axis, (Sz, Lz, Iz)

are the operators for the z-components of the spin, orbital and nuclear angular

momenta, respectively, and (gS, gL, gI) are the corresponding Landé g-factors. If

this energy shift is small compared to the hyperfine splitting

Hhfs = AhfsI · J ⇒ Ehfs =
1

2
Ahfs [F (F + 1)− I(I + 1)− J(J + 1)] (2.25)

arising from the coupling between the electronic and nuclear angular momenta,

then F = I + J and mf are good quantum numbers. Ahfs is the hyperfine

structure constant, equal to Ahfs = h · 3.417GHz and h · 230.86MHz for 87Rb and
39K, respectively. Equation 2.24 can then be written as

HB = µB gF Fz Bz (2.26)

where gF is the relevant Landé g-factor. The resulting Zeeman energy shift is

simply linear in the field strength

U (r)|F,mF 〉 = −µ ·B (r) = µB gF mF Bz (2.27)

The force on an atom in such a potential is then

F (r) = −∇U (r) = −µBgFmF∇Bz (2.28)

From equation 2.27, it follows that any states for which gFmF > 0 can lower their

potential energy by moving to regions of lower magnetic field. These states are

magnetically trappable in a local field minimum and are hence known as low-field

seeking states. The Landé factors of the ground states of both 87Rb and 39K are

gF=1 = −1/2 and gF=2 = 1/2, and hence the trappable |F,mF 〉 states of both

species are |1,−1〉, |2, 1〉 and |2, 2〉.

When the external-field and hyperfine shifts are comparable, however, the full

Hamiltonian H = Hhfs + HB has to be diagonalized. An analytical result exists

for the energy shift of the states belonging to the fine-structure ground state
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manifold (i.e. L = 0, J = 1/2) in the form of the Breit-Rabi formula [117]

E|J=1/2mJImI〉 = − ∆Ehfs

2 (2I + 1)
+ gIµBmB ±

∆Ehfs

2

(
1 +

4mx

2I + 1
+ x2

)1/2

(2.29)

In this formula ∆Ehfs = Ahfs (I + 1/2) is the hyperfine splitting, m = mI ±mJ =

mI ± 1/2, B = |B| is the magnitude of the magnetic field and x is given by

x =
(gJ − gI)µBB

∆Ehfs

(2.30)

For both 87Rb and 39K, I = 3/2. The energy shifts for the D-line ground state

of 39K are shown in figure 2.6.
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Figure 2.6: Hyperfine structure in the 42S1/2 ground state of 39K in a magnetic
field, calculated using the Breit-Rabi formula 2.29. States are labeled with their
low-field quantum numbers |F,mF 〉. The dashed line shows the maximal field,
82.4G, at which the |1,−1〉 state can be magnetically trapped. The maximal trap
depth for atoms in this state is roughly 1.48mK.

We make use of the Breit-Rabi formula, equation 2.29, in our experiments for

the calibration of the magnetic field used to access the Feshbach resonance at

402.5G. This is done via RF spectroscopy on the transition between two magnetic

sublevels in 87Rb, the precise separation of which is obtained using the Breit-Rabi

formula. Our procedure for doing this is described in subsection 3.11.3.

The depth of a magnetic trap is given by U = µ∆B, where ∆B is the difference
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between the field maximum and its minimal value. This depth can be expressed

in units of temperature as U = µBgFmF∆B/kB. For example, neglecting gravita-

tional effects, 87Rb and 39K atoms in the |2, 2〉 state experience a trap of depth

U = µB∆B/kB
∼= (0.7mK/G) × ∆B. Chapter 3 contains the details of the

magnetic trap configurations used during the transport and sympathetic cooling

stages of our experiments.

2.3.2 Non-adiabatic losses from magnetic traps

The atom’s magnetic dipole moment precesses about the local external magnetic

field at the Larmor frequency, ωL = µB/~, and as long as the external field direc-

tion as experienced by the atom changes slowly with respect to ωL the moment

will adiabatically follow the field direction an hence remain in its trappable state

relative to the instantaneous magnetic field. This criterion can be written as

1

ωL

|v · ∇B|
B

� 1 (2.31)

i.e. that the change in field direction experienced by the atom during one pre-

cession about the field is much smaller than 2π. However from criterion 2.31, we

notice an important problem: In regions of very low magnetic field, the adiabatic-

ity criterion can be violated. Atoms of sufficient temperature will experience too

rapidly changing a field and will transition to a different mF state, most likely an

untrapped one (gFmF < 0), and will hence be lost from the trap. These transi-

tions are known as Majorana spin flips [118, 119] and especially plague traps with

magnetic field zeros, at which atoms of arbitrarily low velocity are transferred to

untrapped states and lost from the trap. Since the magnetic zero is also the

place where the coldest atoms congregate, Majorana spin flips also cause acute

heating of the atomic cloud and ultimately prevent the sample from reaching the

temperatures required for entering the quantum degenerate regime [120, 121].

The quadrupole magnetic field produced by our MOT coils contains a magnetic

zero at its origin and is therefore susceptible to such losses, rendering it unsuit-

able for sustained evaporative cooling. In order to address this problem, after

transport of the atoms to the science cell in the quadrupole field the trap is mod-

ified so as to remove the zero-field region. This trap configuration consists of a

harmonic potential whose minimum is offset from zero. More details about this

QUIC (Quadrupole-Ioffe configuration) trap can be found in section 3.8.
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2.4 Evaporative and sympathetic cooling

2.4.1 Evaporative cooling

Laser cooling as described in section 2.1 produces atom samples with tempera-

tures below the Doppler limit but still significantly above the recoil limit. Typical

MOT phase-space densities are on the order of ρ ∼ 10−6 and it was soon realised

that a novel cooling technique was required in order to achieve the higher phase-

space densities (ρ ∼ 1) required for the onset of BEC. This led to the proposal

of evaporative cooling [20] as a means of raising the phase-space density and was

a key milestone on the route to the first experimental realizations of BEC. The

first use of evaporative cooling was for cooling hydrogen atoms in 1988 [21].

Evaporative cooling relies on the selective removal from the trap of atoms with

higher-than-average kinetic energy. Rethermalization of the gas via elastic two-

body collisions, leaves the remaining atoms at a lower equilibrium temperature

(see figure 2.7). The gradual removal of atoms with ever decreasing energies

enables an arbitrary reduction of the temperature, limited in principle only by

the initial number of trapped atoms. The current lowest reported temperature

obtained via evaporative cooling is 450±80pK, achieved by the MIT group [122].
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Figure 2.7: Principle of evaporative cooling. Lowering the trap depth removes
atoms from the high-energy tail of the thermal distribution characterised by tem-
perature T1 (bottom left), after which the remaining gas re-equilibrates via elastic
collisions at a lower temperature, T2 < T1 (bottom right).
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2.4.2 RF and microwave evaporation

The most common technique for selective removal of high-energy trapped atoms

relies on the spatially-varying Zeeman shift experienced by the atoms in the

magnetic trap. Atoms with higher kinetic energies will be located further out

in the magnetic potential according to 1
2
mv̄2 ≈ gFµBmFB. High-energy atoms

can therefore be selectively transferred to untrapped states by the application of

resonant oscillating magnetic field. The most commonly used transitions used in

evaporative cooling are the RF transitions between the magnetic sublevels of the

hyperfine state in which the atoms are confined.
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Figure 2.8: Evaporative cooling in a harmonic potential. Radio-frequency radi-
ation tuned to the ∆mF = 1 resonence frequency induces a series of four single-
photon transitions to the untrapped |2,−2〉 state. Within the dressed atom picture,
The asymptotic state|2, 2;n〉 (where n is the number of photons) is adiabatically
connected to the untrapped |2, 2;n+ 4〉 state by an effective four-photon transi-
tion. The hyperfine evaporation transition |2, 2〉 → |1, 1〉 is indicated by the orange
arrow. The dashed orange arrow shows the route through which |1, 1〉 atoms can
reach the |2, 1〉 state.
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These ∆mF = 1 transitions occur on a surface of constant magnetic field defined

by the condition

~ωRF = µBgFB (RF evaporation) (2.32)

For 87Rb and 39K atoms in the |2, 2〉 state this radiation, also referred to as an RF

knife, drives sequential single-photon transitions between the Zeeman sublevels,

ultimately transferring the absorbing atoms into the untrapped mF = 0 and the

anti-trapped mF = −1,−2 states which are removed from the trap. This process

amounts to truncating the trap depth at the knife energy, which is normally

expressed as a multiple, η, of the cloud’s instantaneous temperature i.e.,

~ωevap = ηkBT (2.33)

where η is known as the evaporation parameter. The process is illustrated, within

both the diabatic and dressed-state [95] pictures, in figure 2.8. For 87Rb and 39K

atoms in the |2, 2〉 state for which gF = 1/2, the resonance frequency for such a

∆mF = 1 transition corresponds to

νRF

B
=
µBgF∆mF

h
= 1.4 MHz/G (2.34)

This method is problematic, however, for use in our sympathetic cooling stage

since due to the almost identical potential experienced by the two species, as many
39K as 87Rb atoms would be removed from the trap. In order to circumvent this

problem, we employ evaporative cooling on the ground-state hyperfine transition

of 87Rb. The transition frequency of νevap ≈ 6.834GHz gives this approach the

name microwave (MW) evaporation. We induce transitions between the trapped

|2, 2〉 state and the antitrapped |1, 1〉 state in 87Rb by applying radiation at a

frequency given by

~ωMW = ~ωHF + 3~ωRF (MW evaporation) (2.35)

In terms of temperature, the height of the evaporating knife in both cases is then

νRF

T
=
kB

2h
= 0.01 MHz/µK (RF)

νMW

T
=

3kB

2h
= 0.03 MHz/µK (MW) (2.36)

In experiments, an initial frequency is chosen for the knife which is subsequently
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ramped down in order to ensure continual cooling of the sample. This procedure

is known as forced evaporative cooling. During microwave evaporation, atoms

transferred into the |1, 1〉 state can be transferred back up into into the trapped

|2, 1〉 state by the evaporation radiation on their way out of the trap (see figure

2.8). These |2, 1〉 atoms lead to heating and atom loss via spin-exchange collisions

and hence need to be removed during evaporation. For this reason, during our

hyperfine evaporation sequence we continuously sweep a second field in order to

transfer any residual |2, 1〉 atoms to the untrapped |1, 0〉 state. See section 3.9

for more details.

Evaporation efficiency

Since this form of cooling relies on the removal of atoms, the overall efficiency of

the process is best characterized by the gain in phase-space density, ρ, compared

to the change in atom number, N . The most commonly used figure of merit for

the evaporation efficiency is the logarithmic derivative, measuring the relative

fractional changes in these quantities

γ = − dρ/ρ

dN/N
= − d ln ρ

d lnN
(2.37)

In the absence of any trap losses due to inelastic collisions the optimal rate for

evaporative cooling, in the sense of yielding the largest atom number at the BEC

transition temperature, is set by the initial temperature and by the elastic collision

rate, Γel = 1/τel, which is responsible for restoring the cloud to its equilibrium

thermal distribution. However, in practice atoms are constantly lost from the

trap due to background and three-body collisions at a rate Γloss = 1/τloss and

this acts to oppose the rise in phase-space density caused by cooling. Therefore

optimal evaporative cooling, in attempting to maximize the value of γ, relies on

a trade-off between efficiency, as determined by the value of η, and cooling speed,

as determined by the rate at which the knife is swept through the cloud.

As a limiting example, in the absence of inelastic losses η could be chosen to be

arbitrarily large and the sweep rate arbitrarily slow, such that after an arbitrarily

large time a single atom containing an arbitrarily large fraction of the cloud’s

kinetic energy would be evaporated from the trap, cooling the remaining atoms

to a corresponding arbitrarily low temperature. It is therefore apparent that the

number to be maximized for efficient evaporation is R = τloss/τel, the ratio of
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‘good’ elastic collisions to ‘bad’ inelastic collisions (i.e. the number of elastic

collisions per trapping time). This is simply stating that the atoms should re-

equilibrate as fast as possible compared to the rate at which they are being lost

from the trap.

In our experiments the initial value of η is usually chosen to be around 7-8, both

for evaporation of 87Rb in the QUIC trap (see section 3.8) as well as for the

optical evaporation of 39K in the CDT (see section 2.5). The evaporation speed

is then empirically found by maximizing the phase-space density at the end of

the evaporation sweep.

Runaway regime

A desirable regime to enter during evaporative cooling is that of so-called runaway

evaporation, in which the elastic collision rate

τel = σnv̄ (2.38)

increases as the temperature is decreased. Here σ is the scattering cross-section,

n is the density and v̄ is the mean thermal velocity. This implies that the increase

in density due to the reduction in temperature more than compensates for the

concomitant reduction in thermal velocity and atom number. Within a simple

model1, the scaling of temperature with number can be expressed as T ∝ Nβ

with β = (η− 3)/3. Similarly, The volume scales as V ∝ Nα with α = (η− 3)/2.

Hence the scattering rate above is found to scale as

σnv̄ ∝ N1−β (2.39)

which implies that runaway cooling requires β > 1 or η > 6. By contrast, in

a uniform system the decrease in temperature leads to an overall decrease in

the elastic scattering rate and hence to a drop in the evaporation efficiency. In

general, the dependence of the density in a power-law trap with exponent ν is

given by

n(r) = n0e
−Arν
kBT (2.40)

which leads to a temperature dependence of n0 ∝ T−3/ν . This implies that in a

linear potential (ν = 1) the runaway regime is entered for a lower value of the

ratio R and evaporative cooling is hence more efficient. See [123, 22, 124] for

1 Found by solving: 3kB(N + dN)(T + dT ) = 3NkBT + ηkBTdN
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a more detailed discussion. This benefit of the linear potential is harnessed in

our experiments with an optically-plugged quadrupole trap, as described in ap-

pendix B. Another experimental constraint on the evaporative cooling procedure

is the requirement that the finite frequency-width of the evaporation knife, due

to power-broadening, magnetic field noise, etc., be smaller that the temperature

of the remaining atoms. Careful field stabilization and choice of radiation power

throughout the evaporation ramp can mitigate these effects [125, 126, 127, 128].

2.4.3 Sympathetic cooling

Introduction and principles

There are circumstances, however, in which attempting to perform direct evapo-

rative cooling on an atomic species is undesirable. This is the case, for example,

when the scattering length is very small or when one is working with a low-

abundance species and wishes to avoid the heavy atom losses inherent to evapo-

rative cooling1. For fermionic species at low temperatures, s-wave collisions are

forbidden by the Pauli exclusion principle and therefore these species also require

the use of an indirect evaporation procedure [129, 26, 27, 130, 131].

The aim of sympathetic cooling is the cooling of a ‘target’ gas, in thermal con-

tact with a ‘buffer’ gas, by forced evaporative cooling of the buffer gas. The

temperature of the target atoms is reduced through their thermalization with

the cold buffer-gas reservoir. Since the cooling of both species depends on the

removal of only one species from the trap, for a given initial buffer gas number

there is a natural tradeoff between the final size of the cooled load and the lowest

achievable temperature. The background triplet scattering length of 39K is small

and negative, with a value of abg = −33a0 [132, 60], where a0 is the Bohr ra-

dius, a0 ≈ 0.53Å. Furthermore, the Ramsauer-Townsend minimum in the s-wave

scattering cross-section in 39K occurs at a temperature of T ∼ 320µK, where con-

tributions from higher partial waves are still small (σl ∝ T 2l, [133]). These facts,

together with the modest MOT numbers compared to the temperatures achieved

by laser cooling, make sympathetic cooling of 39K the most promising approach

for cooling this species2. The effectiveness of 87Rb as a buffer gas for 39K has

1 An exception to this is the recent direct evaporative cooling of the low-abundance species
84Sr and 86Sr [38, 39, 40], made possible by the existence of a metastable state in which a
large number of atoms could be accumulated during laser cooling.

2 Despite these difficulties, the Florence group has recently reported on the condensation of
39K without a sympathetic cooling stage.
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already been demonstrated in a series of experiments [59, 36]. Furthermore, the

use of an 8.5G-wide inter-species Feshbach resonance located at 317.9G in the

|1, 1〉 states of 87Rb and 39K enables the enhancement of the 39K-87Rb scattering

cross section from its background value of aKRb = 36a0 to values on the order

of aKRb ≈ 150a0 and hence increase the efficiency of sympathetic cooling, as is

carried out in [36].

A model of sympathetic cooling

A simple and analytically soluble model for sympathetic cooling has been pro-

posed and used by the Aspect group in 2001 [134] in order to better understand

the results of their experiments on simultaneous production of BECs in samples

of 87Rb containing atoms in the |2, 2〉 and |1,−1〉 states. In these experiments,

the |1,−1〉 state (the buffer gas) was evaporated directly, since due to its smaller

magnetic moment its spatial extent in the magnetic trap was larger, while the

|2, 2〉 component (the target gas) was cooled to degeneracy sympathetically via

elastic collisions with the |1,−1〉 atoms. A similar experiment with the same com-

ponents had already been performed in the Wieman group in 1997 [129]. Below

we review this model and in chapter 3 we apply it to the results of our 87Rb-39K

sympathetic cooling measurements.

In addition to the discretization of what is actually the continuous process of

atom removal and thermal re-equilibration, this model makes some further as-

sumptions.

1. Both species are assumed to always be thermalized with themselves and

with each other i.e., the thermalization rate is much higher than the cooling

rate.

2. The gas is described by classical statistics (i.e., the classical equipartition

theorem, allocating 1
2
kBT to each degree of freedom, is valid)

3. The number of target atoms, N2 is taken to be constant.

4. Atoms escaping from the trap neither collide nor exchange energy with the

remaining atoms.

Initially, the total energy of N1 buffer and N2 target atoms in a harmonic trap is

E = 3 (N1 +N2) kBT (2.41)
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Assuming a number, dN1, of atoms is evaporatively removed from the trap with

an energy cutoff of ηkBT , the corresponding (negative) energy change is

dE = dN1 (η + κ) kBT (2.42)

where κ ∈ [0, 1] is a function of η and of the effective dimension of the surface on

which evaporation takes place [22]. After rethermalization at a new temperature,

T + dT , the total energy is

E + dE = 3 (N1 + dN1 +N2) kB (T + dT ) (2.43)

Substituting in Eqns. 2.41 and 2.42, and keeping only first-order terms yields

dT

T
= α

dN1

N1 +N2

(2.44)

with α = (η + κ) /3− 1. Assuming evaporation at constant η, we get

T = Tmin

(
N1

N2

+ 1

)α
with Tmin = Tinit

(
N2

N init
1

)α
(2.45)

where Tinit and N init
1 are the initial values of the respective quantities and N2

has been neglected with respect to N init
1 in the expression for Tmin. This last

approximation is valid since in order to reduce the temperature by several orders

of magnitude, the initial fraction of target atoms in the gas has to be small. In

our experiments its value is no larger than 1/10.

2.5 Optical trapping

In this section we briefly discuss the optical dipole force, introduced in section

2.1, which provides the dominant contribution to the total optical force when the

light field is far-detuned from resonance and the scattering force is weak. A non-

magnetic trapping potential is required for experiments utilizing Feshbach reso-

nances, especially in our case since the |1, 1〉 state in which our resonance exists

is high-field seeking and therefore magnetically untrapped. Feshbach resonances

involve the application of a uniform magnetic field, as discussed in the follow-

ing section, and are therefore incompatible with non-uniform magnetic trapping

potentials. In addition, the tight confinement provided by optical traps enables

more efficient evaporative cooling, which we employ following the sympathetic

cooling stage of our 39K production sequence, as described in chapter 3.
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As mentioned previously, the dipole force arises from the interaction of the atom’s

induced dipole with the intensity gradient of the light field. This is a conservative

force and hence can be related to a potential which can be used for trapping

and manipulation of atoms. This can be seen more clearly by integrating the

expression for the dipole force in equation 2.12, which we repeat here for clarity:

Udip(r) = −
∫

Fdip · dr with Fdip = −~δ
2
· ∇(I/IS)

1 + I/IS + (2δ/Γ)2 (2.46)

Udip(r) =
~δ
2

ln(1 + I/IS + (2δ/Γ)2) + C1

=
~δ
2

ln(1 + (I/IS + 1)/(2δ/Γ)2) + C2

≈ ~δ
2

Γ2

(2δ)2

I

IS
((δ/Γ)2 � I/IS)

=
3πc2

2ω3
0

Γ

δ
I(r) (2.47)

where ω0 is the transition frequency. In the above, we have assumed a large

detuning and low intensity, (δ/Γ)2 � I/IS, have neglected any constant factors

along the way and have used the relation IS = πhc/3λ3τ of equation 2.10. Within

the same large-detuning approximation, the scattering rate from equation 2.12 is

given by

Rscatt(r) =
3πc2

2~ω3
0

(
Γ

δ

)2

I(r) (2.48)

A semi-classical model can also be used to derive the optical dipole potential,

as is done for example in [135], which also contains a more exhaustive review

of optical trapping of neutral atoms. By using the expression for the complex

atomic polarizability, derived using the classical Lorentz oscillator model [136],

the resulting expressions are

Udip (r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I (r)

Rscatt (r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I (r) (2.49)

which reduce to equations 2.47 and 2.48 when the field is tuned closer to resonance
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such that |δ| � ω0 and the second terms in the above equations can be neglected.

Hence red-detuned light (δ < 0) gives rise to negative potentials, attracting atoms

to intensity maxima, while blue-detuned light (δ > 0) attracts atoms to inten-

sity minima. Atoms can therefore be trapped in a suitably configured intensity

distribution. Since the potential depth scales as I/δ while the scattering rate

scales as I/δ2, dipole traps typically use high intensities and large detunings to

keep scattering as low as possible while providing a sufficiently deep potential.

A common way to create such a confining potential is in the intersection region

of two non-parallel red-detuned beams, as is done in our experiments, or using

a single red-detuned beam and relying on the finite Rayleigh range to provide

the axial confinement [137, 138]. Periodic optical lattices can also be generated

by the standing-wave interference pattern of pairs of counter-propagating red- or

blue-detuned beams [139, 135].

2.6 Feshbach resonances

As discussed in chapter 1, one of the main motivations for our use of 39K is the

precise tuning of the interparticle interaction strength over a broad range afforded

by the existence of a wide and conveniently-located Feshbach scattering resonance

in the atoms’ absolute ground state. This resonance gives us access to a large

range of interaction strengths, from strongly repulsive to strongly attractive and

including the special case of an ideal, non-interacting, gas. This external control

over the scattering length requires only the application of a suitable homogeneous

magnetic field to the atoms, as discussed below.

The following provides a description of the rudiments of scattering theory and

Feshbach resonances, and is intended only to introduce the relevant quantities

and parameters which will be referred to throughout the rest of this thesis, as

well as providing references for further reading.

2.6.1 Scattering theory

When an incident particle with momentum k, in the form of a plane wave ψinc =

eik·r, scatters from a spherically symmetric potential, V (r), the asymptotic form

of the overall wavefunction, ψk (r) at a large distance compared to the effective



40 Theoretical background

range of the potential, is given by [140]

ψk (r) ∼ eik·z + f (k, θ)
eikr

r
(2.50)

where θ is the angle between the momentum of the incoming plane wave and that

of the scattered wave. f (k, θ) is the amplitude of the outgoing spherical wave and

is called the scattering amplitude. At low energies, only partial waves with zero

angular momentum (l = 0) contribute to the outgoing wavefunction. This can be

understood qualitatively as higher partial waves of angular momentum quantum

number l not possessing sufficient energy to cross the centrifugal energy barrier,

~2l (l + 1) / (2mrr
2), where r is the interparticle distance, and simply being re-

flected from the scattering potential without sampling the short-range potential

V (r). In this limit the scattering amplitude sheds its angular dependence and

approaches a constant, −a, called the scattering length. Hence in the k → 0 limit

of vanishingly-low-energy collisions, the wavefunction reduces to

ψ (r) = 1− a

r
(2.51)

and the scattering length can therefore be associated with the intercept of the

asymptotic wavefunction ψ along the radial axis. Comparing equation 2.51 with

the solution of the radial Schrödinger equation allows us to relate the scattering

length, a, to the phase shift δ0 accumulated, in the same low-energy limit, by the

asymptotic scattered wavefunction during the time it spends inside the effective

range of the scattering potential and gives

a = − lim
k→0

tan δ0

k
(2.52)

The scattering cross-section, σ, can be obtained from the scattering amplitude

using
dσ

dΩ
= |f (θ)|2 ⇒ σ = 2π

∫ 1

−1

|f (θ)|2 d (cos θ) (2.53)

which in our low-energy limit with f (θ) = −a gives

σ = 8πa2 (2.54)

where a factor of 2 has been added to the result of the integration due to the

requisite symmetrization of the bosonic wavefunction [140].
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2.6.2 Feshbach resonances

In scattering theory, open channels and closed channels refer to the collection

of quantum states in which particles are allowed or forbidden, respectively, to

emerge from a scattering event by energy conservation. If Etot is the total energy

of the incoming particles, defined by Etot = Eψ1 + Eψ2 + E1−2
kin , where Eψ1/ψ2 are

the internal energies of the particles in states ψ1/ψ2 and E1−2
kin is their relative

kinetic energy, then any channel with energy E 6 Etot is called an open channel

and any channel with E > Etot is called a closed channel. A closed channel can

involve, for example, two particles that are in different internal states to those of

the incoming particles, and the difference in energy between the two molecular

scattering potentials is then determined by the difference in the internal energies

of the two states.

A Feshbach resonance (see [42], and references therein) occurs when the energy of

an incoming open elastic channel1 is magnetically tuned so as to coincide with that

of a bound (molecular) state of an energetically closed channel. This tuning can

be accomplished when the two channels possess different total magnetic moments

and therefore experience a differential Zeeman shift in the presence of an external

magnetic field. The difference between the energy of the incoming state and that

of the closest bound state is then

E − E0 = ∆µ (B −B0) (2.55)

where ∆µ is the difference between the magnetic moments of the two channels

and E0 and B0 are the energy and magnetic field positions of the resonance. This

scenario is illustrated in figure 2.9.

In the vicinity of a Feshbach resonance, the dependence of the s-wave scattering

length on the external magnetic field is conventionally described by

a (B) = abg

(
1− ∆

B −B0

)
(2.56)

where abg is the background scattering length far from the resonance and the pa-

rameter ∆ is the resonance width, defined as the distance between the resonance

centre and the field, Bzc , at which the scattering length vanishes - the so called

1 i.e. one in which the initial and final relative kinetic energies are equal.
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Figure 2.9: A Feshbach scattering resonance occurs when the energy of two par-
ticles in an open collisional channel coincides with that of a bound state in a closed
molecular channel. The distance between the two molecular potentials can tuned
by an external magnetic field.

zero-crossing1

∆ ≡ Bzc −B0 ∝
1

abg∆µ
(2.57)

Equation 2.56 can be intuitively understood as the result of second order per-

turbation theory, with the second order process describing incoming particles

coupling to an intermediate closed channel which then decays into two particles

exiting in an open channel. This intuitive understanding, together with equa-

tions 2.55, 2.56 and 2.57 can also be used to see that the positive scattering

length which arises when the energy of the incoming channel is higher than that

of the closed-channel bound state, leads to a repulsion between the states (simi-

larly to the optical potential of section 2.5) and that a negative scattering length

correspondingly leads to an interparticle attraction when the incoming energy is

lower than that of the bound state.

The variation of the scattering length with magnetic field described by equation

2.56 is shown in figure 2.10 for the position and width of the resonance used in

our experiments - 402.5G and 52G, respectively.

It is worth noting that in the vicinity of the zero-crossing i.e. B ≈ Bzc, the

1 i.e. the width characterizes the field range over which the resonance dominates the contri-
butions of other states to the scattering length.
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Figure 2.10: Variation of the scattering length with magnetic field in the vicinity
of the 52G-wide Feshbach resonance at 402.5G used in our experiments.

scattering length is given approximately by

a (B) ≈ abg

∆
(B −Bzc) (2.58)

Therefore when precise control of the scattering length near the zero-crossing is

desired for experiments on extremely weakly-interacting gases, a resonance with a

small background scattering length and a large resonance width is advantageous.

This is precisely the case in 39K whose −33a0 background scattering length and

52G-wide resonance make it a natural candidate for experiments such as those

investigating Anderson localization [67, 141, 142] and interferometric experiments

wishing to minimize the effects of interactions [143].

The Feshbach resonances present in the |F = 1〉 ground state of 39K, as well as

several inter-species 87Rb-39K resonances, have been discovered and investigated

in a series of experiments by the group at LENS [59, 60, 36, 58, 62, 61]. The

techniques described in the preceding sections can be used in order to lower the

trapped cloud’s temperature into the regime of quantum degeneracy, in which

the effects of quantum statistics must be accounted for in describing the system’s

thermodynamic behaviour. The following section outlines perhaps the most well

known manifestation of these effects in the field of ultracold atoms - the Bose-

Einstein condensation transition.
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2.7 Bose-Einstein Condensation

The theory of Bose-Einstein condensation in ideal and interacting gases has been

expounded, discussed and dissected in the pages of a huge collection of literature,

including books [123, 144], review articles [45, 145], research papers and theses.

Below we very briefly review some of the main results, most of which will be

discussed in further detail in chapters 4 and 5 in the context of our experiments

on the thermodynamics of 39K bose gases and are given here in order to introduce

the main quantities of interest and their origins.

2.7.1 Non-interacting gas

The mean occupancy, f(εp), of a single-particle state of energy εp in an ideal Bose

gas in thermodynamic equilibrium at temperature T is given by the Bose-Einstein

distribution function

f (εp) =
1

e(εp−µ)/kBT − 1
(2.59)

where kB is the Boltzmann constant and µ is the chemical potential, enforcing

the conservation of particle number. The total atom number is therefore given

by the normalization condition

Ntot =
∑
p

f (εp) (2.60)

Replacement of the summation by an integration does not correctly account for

the occupancy of the ground state and therefore the total atom number is divided

into a ground-state contribution in addition to the excited state number

Ntot = N0 +Nex = N0 +

∫ ∞
0

f(ε)g(ε)dε (2.61)

where g (ε) = V
4π2

(
2m
~2
)3/2√

ε is the 3D density of states1 with V the system volume

and N0 is the ground-state occupancy. Within the semi-classical approximation

and in the presence of an external potential, V (r), the single-particle energies

are given by εp (r) = p2/2m + V (r). With the substitution x = p2/2mkBT , the

integral in equation 2.61 for the number of atoms in excited states can be written

1 We assume all particles are in a single spin state.
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as

nex (r) =
Nex

V
=

2√
πλ3

dB

∫ ∞
0

x1/2

z−1ex − 1
dx (2.62)

where nex(r) = Nex/V is the excited-state (‘thermal’) density distribution, the

parameter z(r) is defined as z(r) = e[µ−V (r)]/kBT and λdB is the thermal de Broglie

wavelength, given by

λdB =

√
2π~2

mkBT
(2.63)

The result of the integral in equation 2.62 is

nex (r) =
g3/2 (z (r))

λ3
dB

(2.64)

where the polylogarithm g3/2 is given by

gγ (z) =
∞∑
n=1

zn

nγ
(2.65)

Therefore, armed with the functional form of the external potential, the total

atom number and the temperature, equation 2.62 can be solved for the excited-

state spatial density distribution.

Uniform system

In an infinite uniform system, V = 0, and since for an ideal gas µ 6 0, the value

of z (r) cannot exceed unity and hence the value of g3/2 (z (r)) cannot exceed

g3/2 (1) = ζ (3/2) = 2.612. This bound on the excited-state atom density signals

the onset of condensation, with any additional particles present in the system

constrained to occupy the ground state. The temperature at which this occurs

can be found by inserting z (r) = 1 into equation 2.64 and solving for T .

Tc =
2π~2

mkB

(
n

g3/2 (1)

)2/3

≈ 3.31
~2n2/3

mkB
(uniform, ideal gas) (2.66)

This is the temperature at which the number of atoms in excited states is equal

to the total atom number, and using equations 2.66 and 2.61, the condensate
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fraction at temperatures below Tc may be obtained as

N0

Ntot

= 1−
(
T

Tc

)3/2

(uniform, ideal gas) (2.67)

In summary, for a uniform system, the onset of BEC occurs when the den-

sity reaches the critical value ncrit = 2.612/λ3
dB i.e. the phase-space density

ρ ≡ ncritλ
3
dB = 2.612.

Harmonic potential

For a three-dimensional harmonic potential of the form

V (r) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

(2.68)

the density of states is given by g (ε) = 1
2(~ω̄)3

ε2, with ω̄ = (ωxωyωz)
1/3 the geo-

metric mean of the trapping frequencies. Performing the integral of equation 2.64

over r and setting µ = 01, yields the equivalent expression to 2.66 for the critical

temperature for saturation of the excited state atom number.

Tc =
~ω̄
kB

(
N

ζ (3)

)1/3

= 0.94
~ω̄
kB
N1/3 (harmonic potential) (2.69)

where ζ (α) =
∑∞

n=1 n
−α is the Riemann zeta function. This can equally be

expressed as a critical number for a given temperature

Nc = ζ (3)

(
kBT

~ω̄

)3

= 1.202

(
kBT

~ω̄

)3

(harmonic potential) (2.70)

Using equation 2.69 the expression for the condensed fraction in an ideal har-

monically confined gas is given by

N0

Ntot

= 1−
(
T

Tc

)3

(harmonic potential) (2.71)

Below Tc, one has µ = 02 and equation 2.64 for the density distribution of the

1 Condensation occurs in general when the chemical potential reaches its maximal value,
namely the lowest value of the potential energy min(V (r)). For the 3D harmonic poten-

tial considered here, this corresponds to the zero-point energy 1
2~
∑3
i=1 ωi which can be

neglected at temperatures when kBT � ~ω̄
2 Neglecting the zero-point energy - see previous footnote
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excited-state atoms reduces to

nex (r) =
g3/2

(
e−V (r)/kBT

)
λ3
dB

=
g3/2

(
e−mω

2r2/2kBT
)

λ3
dB

(harmonic potential)

(2.72)

The density profile of the condensate wavefunction in the harmonic potential is

n0 (r) = |φ0 (r)|2 =
(mω̄
π~

)3/2

exp

[
−
(
x

ax

)2

−
(
y

ay

)2

−
(
z

ax

)2
]

(2.73)

where φ0 (r) is the single-particle ground state wavefunction, whose widths are

given by the corresponding oscillator lengths ai =
√

~
mωi

.

2.7.2 Weakly-interacting gas

Interactions between the atoms modify the above results and will be discussed

in more detail in chapters 4 and 5. Here we only discuss some of the properties

of the condensate.

The Gross-Pitaevskii equation

At the low energies where s-wave scattering dominates and collisions can be de-

scribed as contact interactions, the effective interaction strength is given by

g =
4π~2a

m
(2.74)

where a is the scattering length described in section 2.6, N is the atom number

and m is the mass. The equilibrium state of the condensate is governed by the

time-independent Gross-Pitaevskii (GP) equation{
− ~2

2m
∇2 + V (r) + g |ψ|2

}
ψ = µψ (2.75)

where ψ = ψ (r) is the many-body wavefunction and the non-linear third term

on the left-hand side accounts for the mean-field interaction energy produced by

atom ensemble. The density and atom number are then

n (r) = |ψ (r)|2 ⇒ N =

∫
|ψ (r)|2 dr (2.76)
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A corresponding mean-field description of the non-condensed component will be

presented in chapter 4.

The Thomas-Fermi approximation

The Gross-Pitaevskii equation, 2.75, has a simple solution which is valid for

sufficiently large clouds, such that the kinetic energy term is much smaller than

the interaction energy term and can be neglected in the GP equation. In this

approximation, the atom density can therefore be found as

{
V (r) + g |ψ|2

}
ψ = µψ ⇒ n (r) = |ψ (r)|2 =

µ− V (r)

g
(2.77)

Hence the boundary of the cloud is given by V (r) = µ, which for the harmonic

potential of equation 2.68 gives a so-called Thomas-Fermi radius of

R2
i =

2µ

mω2
i

, i = x, y, z (2.78)

The chemical potential, µ is found from the normalization condition of equation

2.76 to be

µ =
~ω̄
2

(
15Na

āho

)2/5

(2.79)

where āho =
√

~
mω̄

is the harmonic oscillator length associated with the mean

trapping frequency, ω̄. The condensate density therefore has the form of an

inverted parabola

n (r) = |ψ|2 = n0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(2.80)

See section 3.15 for a description of how these functions are used to extract

physical parameters from images of the atomic cloud.

2.8 Absorption imaging

In most ultracold atom experiments, information about the system is extracted

from images of the atomic density distribution, with the vast majority of exper-

iments utilizing optical techniques in order to measure this spatially-dependent

quantity. Several optical imaging schemes exist, each with its own advantages

and drawbacks, lending themselves to imaging under different experimental con-
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ditions. In general, different techniques rely on either the absorptive or dispersive

components of the atom-light interaction, which predominantly either attenuate

or introduce a phase shift of the incident light field. The relative contribution of

each of these components is determined by the density of the cloud and the de-

tuning of the probe light. Below is a brief description of the most commonly-used

imaging technique - absorption imaging.

Absorption imaging relies on the attenuation of an incident beam as a result

of being partially absorbed by the atomic sample, with the shadow cast by the

cloud in the plane of the atoms being imaged onto a charge-coupled device (CCD)

by an imaging system1. According to the Beer-Lambert law, described below,

the spatially varying intensity profile recorded on the CCD is a function of the

cloud’s spatially varying optical density, which is itself directly proportional to

the density distribution of the cloud, integrated along the propagation axis of

the imaging beam. Physical quantities are then inferred from the form of this

density profile (see section 3.15 for a description of our analysis procedure). The

dynamic range of this technique is limited to imaging optical densities no higher

than roughly 4, since achieving detectable transmission at these densities requires

a large detuning, which would also lead to a significant dispersive contribution

to the interaction, causing spreading of the refracted light beyond the collection

range of the optics and leading to a a false absorption signal [145]. In order

to avoid this problem, dense clouds are allowed to expand during time-of-flight

(TOF) such that their optical densities are sufficiently reduced to obtain a strong

enough signal-to-noise ratio. This is especially important for condensed clouds,

whose in-situ optical densities are typically on the order of a few hundred.

2.8.1 Theory of absorption imaging

For a monochromatic beam of intensity I (x, y), propagating through a cloud of

density n, the change in beam intensity, ∆I upon passing a distance dz is given by

the product of the photon energy, the scattering rate and the number of particles

per unit area, ndz
dI

dz
= −~ωRscattn = −σnI (2.81)

1 c.f. Plato’s Allegory of the Cave.
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where in the second equality the scattering rate, σ is given by

σ =

≡σ0︷︸︸︷
3λ2

2π

1

1 + I/IS + (2δ/Γ)2 (2.82)

obtained from the scattering rate in equation 2.12 and the saturation intensity,

Isat of equation 2.10. Integrating equation 2.81, gives an exponential decay of the

intensity as the beam propagates through the cloud

I (x, y) = I0 (x, y) exp

[
−σ
∫
n (x, y, z) dz

]
≡ I0 (x, y) e−OD (2.83)

where the optical density, OD, is defined by

OD (x, y) = σ

∫
n (x, y, z) dz︸ ︷︷ ︸

column density, n̄(x,y)

= − ln

(
I (x, y)

I0 (x, y)

)
(2.84)

Hence imaging the intensity distribution gives us direct access to the singly-

integrated number density, also known as the column density, n̄ (x, y), of the

cloud, from which physical properties such as atom number and temperature

can be extracted (see section 3.15). The total atom number can be found using

equation 2.84

N =

∫
n (r) d3r =

1

σ

∫ ∫
OD (x, y) dxdy (2.85)

In practice, stray light impinging on the CCD even in the absence of the imaging

beam can bias the measured optical density, and so a background ‘dark’ image is

also recorded and subtracted from each of the intensity profiles on the right-hand

side of equation 2.84 prior to division. Equation 2.84 therefore becomes

OD (x, y) = − ln

(
I (x, y)− Idark (x, y)

I0 (x, y)− Idark (x, y)

)
(2.86)

To summarise, an image with the atoms present is captured (yielding I(x, y))

followed by an image in the absence of the atoms but in the presence of the

imaging beam (yielding I0(x, y)). Finally, either one or two background images

are taken in the absence of both atoms and imaging light (yielding Idark(x, y)).

Section 3.14 describes our absorption imaging setup and procedure, while section
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3.15 discusses the methods by which we extract the temperature of the cloud, as

well as the number of atoms in the condensate and in the thermal component,

from these absorption images.





3
Design, assembly and

performance of our 39K-87Rb

apparatus

“Keep cool but care.”

Thomas Pynchon, V.
Abstract

This chapter describes the design and construction of our apparatus for producing

ultracold 39K and 87Rb clouds, as well as the experimental procedure we utilize in

order to cool the samples to quantum degeneracy and the results of the various

stages within this process. It is intended to serve as a manual or field-guide of

sorts for any student tasked with the assembly of a similar experimental setup, or

indeed maintenance and expansion of the one described here. Care has been taken

to try and motivate the choice of various aspects of the experimental apparatus and

sequence, not only in order to reflect the large portion of my and my colleagues’

work that has gone into the system’s design and construction, but also in the hope

that others will benefit from this information as I have benefited from reading about

others’ experiences and insights.

53
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3.1 Sequence overview

Mirroring the structure of chapter 2, the sections of this chapter trace the pro-

gression of a typical experimental sequence culminating in a condensed cloud of

over 4× 105 39K (or 8× 105 87Rb) atoms confined in a purely optical trap. The

general outline of such a sequence is as follows:

The experiment takes place within an ultra-high vacuum (UHV) chamber (Section

3.2). Potassium and Rubidium atoms are released from heated dispensers and

the desired isotopes, 39K and 87Rb, are jointly cooled and confined in a magneto-

optical trap (MOT) formed by three pairs of dual-frequency, counter-propagating

frequency-locked laser beams (Section 3.3) and a quadrupole magnetic field (Sec-

tion 3.4). Both species are then optically pumped into magnetically-trappable

states and transferred into a purely magnetic quadrupole trap (Section 3.6) for

transport (Section 3.7) to the ‘science cell’ located in the higher-vacuum region

of the vacuum chamber in preparation for the subsequent evaporative cooling

stage. Figure 3.1 shows a diagram of the vacuum chamber, translation stage and

quadrupole coil mount.
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Figure 3.1: Diagram of the vacuum chamber, translation stage and quadrupole
coil support. Visible are (1) the ion pumps, (2) turbo pump, (3) atom source
module, (4) MOT cell and quadrupole coils, (5) quadrupole coil mounting arm, (6)
translation stage, (7) Ti-Sub pump, (8) science cell and (9) six-way cube.

In the science cell, the linear magnetic potential generated by the quadrupole coils

is converted into a harmonic potential with a non-zero field minimum (Section

3.8) in order to avoid the spin-flip losses which occur in zero-field regions. There
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follows a stage of sympathetic evaporative cooling, in which 87Rb atoms with

above-average kinetic energy are forcibly ejected from the magnetic trap, leaving

behind colder atoms whose return to thermal equilibrium leads both to cooling

of the 87Rb atoms and to efficient cooling of the 39K atoms with which they

are in contact (Section 3.9). In preparation for the application of a magnetic

Feshbach field, both species are transferred into a crossed optical dipole trap

(CDT) formed by a far-red-detuned IR laser (Section 3.10). The 87Rb is then

removed from the CDT by a resonant light pulse and the 39K transferred into

its |F = 1,mF = 1〉 ground state, in collisions of which a broad, conveniently-

located Feshbach resonance exists. The homogenous Feshbach field is then applied

in order to bring the inter-particle scattering length to a large, positive value

(Section 3.11). This is followed by an optical evaporation stage during which

the CDT power is gradually lowered. The 39K is thus evaporatively cooled to the

desired temperature and its phase-space density increased, if desired, through the

condensation critical point. In order to extract information about the sample,

all magnetic and optical fields are extinguished and the cloud is illuminated with

a resonant light pulse, in the presence of a magnetic guide field, after several

milliseconds of free expansion. An absorption image of the illuminated cloud is

recorded on a CCD camera (Section 3.14) and physical information extracted

from it by means of a least-squares fit to a theoretical absorption profile (Section

3.15). We begin, therefore, with a description of our vacuum system.

3.2 Vacuum system

3.2.1 Background

The vacuum chamber to which the atoms are confined - and inside which all our

experiments take place - is one of the key components of any cold-atom apparatus.

Collisions with room-temperature background atoms cause heating of the species

under study and invariably transfer sufficient energy to cause the ejection of atoms

from the trapping potential. The rate of these ‘one-body’ background collisions

depends on the ambient pressure and is minimized by ensuring as high a vacuum

as possible in the trap region.

Cloud lifetimes on the order of several minutes are desirable in order to provide

sufficient time for efficient evaporative cooling and to ensure that experiments

can be performed in thermodynamic equilibrium. Such lifetimes typically require

an ultra-high vacuum (UHV) in the region of 10−11mbar. In addition, since we



56 Design, assembly and performance of our 39K-87Rb apparatus

wish our dual-species MOT to be fully loaded from a background vapour of 87Rb

and 39K in a few seconds, we require a higher pressure in the MOT region. A

pressure on the order of 10−9mbar is high enough to provide rapid MOT loading,

while being low enough to ensure that a sufficient number of atoms survive the

transport to the lower-pressure region without being lost to background collisions

on the way. This pressure difference between the two stages of the experiment

lends itself to the idea of spatially separating the regions in which the MOT and

evaporation steps take place in order to guarantee optimal conditions for each

process [146].

The design of the vacuum chamber also dictates the amount of access avail-

able to the science cell. Access is required for the various trapping and imaging

beams with their associated optics, as well as for the placement of the numerous

magnetic coils used in the generation of the magneticic trapping potentials, the

Feshbach field, compensation fields and required field gradients. In this context

too, separation of the MOT and science cell regions is advantageous, as it allows

us to greatly increase access to the atomic sample. This section will describe the

design, implementation and performance of our vacuum system, which utilises a

double-differential configuration to achieve a pressure ratio on the order of 103 be-

tween the MOT and science cell regions of the system. We initially outline some

guiding principles and define some useful quantities to be used in the design of

vacuum chambers with specific desired characteristics.

3.2.2 Pressure regime

In designing our vacuum system, it is important to remember that at the pres-

sures of interest, the gas inside the chamber is well within the molecular flow

regime, in which the mean free path of a molecule is much longer than the char-

acteristic dimension of the apparatus [147]. This is quantified by the so-called

Knudsen number Kn = λ/D, where λ is the mean free path and D is the charac-

teristic dimension, which for a tube would be its diameter. As an example, from

simple kinetic theory, for pressures on the order of P = 10−10mbar and at room

temperature, the number density n = p/kBT is around 2 · 1012m−3 , implying a

mean free path λ = (nσ)−1 of over 4km for nitrogen molecules (whose diameter

is around 3.7Å). The ratio of molecule-chamber to molecule-molecule collisions

is typically given by a few times the Knudsen number and so at these pressures

and temperatures, molecule collisions occur almost exclusively with the cham-

ber walls and not with each other. In the molecular flow regime (Kn � 1), the
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conductance of a tube whose length is not much longer than its diameter, to an

accuracy of a few percent, is given by [147]:

Ctube =
12.4D3/L

1 + 4D/3L
ls−1 (3.1)

where D and L are the tube diameter and length in cm, respectively. This expres-

sion is obtained by combining the conductance of a tube whose length is much

larger than its diameter, with that of an aperture appropriate to the entrance

area of the tube.

3.2.3 Differential pumping

In order to achieve a pressure ratio of two or three orders of magnitude, we make

use of a two-stage differential pumping setup. The basic principle of differential

pumping is illustrated in figure 3.2a. Two regions of the vacuum chamber, one

of which is connected to a pump of speed S, are separated by a low-conduction

section of conductance C1
1.

a)!

C1!

CP!

Pump!
S!

(P≈0)!

P1! P0!

S*!

b)!

C1!

CP1!

Pump!
S1!

(P≈0)!

P1! P0!

S1*!

C2!

CP2!

Pump!
S2!

(P≈0)!

P2!

S2*!

Figure 3.2: Differential vacuum schematic. a) Single differential pumping stage.
A chamber connected to a vacuum pump of speed S is connected to another, higher-
pressure, chamber via a low-conductance section, C1. The conductance of the sec-
tion connecting the pump to the first chamber is denoted by CP and the pressures
in the low- and high-pressure chambers are denoted by P1 and P0, respectively. b)
Two-stage differential pumping simply adds a second differential stage to the setup
described in (a).

We can estimate the pressure in different regions of the chamber using the useful

analogy between the chamber parameters and those of electrical circuits obeying

1 Note: The units of both conductance, C, and pumping speed, S, are ls−1.
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Ohm’s law, V = I · R. The throughput, Q, related to the particle flow rate by

dN/dt = Q/kBT , is analogous to the electrical current, I. The pressure, P, is

analogous to the voltage, V, and the tube conductance, C, is analogous to the

electrical conductance, G = 1/R. Pumps are modelled as regions of zero pressure

and pumping speed S. It is important to remember to combine the pump’s speed

with the conductance, CP, of the tube leading to the pump in order to obtain the

effective pumping speed, S∗ according to 1/S∗ = 1/S + 1/CP.

The vacuum ‘circuit’ shown in figure 3.2a can then easily be seen to consist of a

‘pressure divider’, and the ratio of pressures in the first and second chambers is

given by:

P1

P0

=
1/S∗

1/S∗ + 1/C1

=
C1

C1 + S∗
≈ C1

S∗
where C1 � S∗ (3.2)

The generalization to a second differential stage, as shown schematically in figure

3.2b is given by:

P2

P0

=
1

P0

·
(
P1 ·

C2

C2 + S∗2

)
=

C1

C1 + S∗1 + (C2S∗2)/(S∗2 + C2)
· C2

C2 + S∗2
≈ C1C2

S∗1S
∗
2

(3.3)

where the last approximation is valid when C1, C2 � S∗1 , S
∗
2 . In addition to

these considerations, other important principles to follow are the minimization

of internal surface area to reduce outgassing, the use of high-conductance tubes

near pump intakes and the use of low-outgassing materials such as stainless steel

and titanium.

3.2.4 Our chamber

The schematic layout of our vacuum system is shown in figure 3.3. The MOT

and science cells are connected by a transfer tube 65cm in length, with an in-

ner diameter (ID) of 10mm. Two ion pumps are located 19cm and 49cm along

this tube, providing the double-differential described above. The tubes connect-

ing the ion pumps to the transfer tube are 38mm in diameter near the transfer

tube and 63mm in diameter at the pump entrance. They are both 30cm long,

with the one nearest the science cell incorporating a vertically-mounted titanium-

sublimation (Ti-Sub) pump. Located on the transfer tube, halfway between the

two ion pumps, is a small six-way cube incorporated in order to allow viewing
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of the cloud during transport for diagnostic purposes and/or to allow for a pre-

liminary evaporative cooling step. The conductances of the components labelled

in figure 3.3 are listed in Table 3.1. In the absence of any pressure source in

the science cell region we expect P2 = P3, and using equation 3.3 we obtain an

estimate for the pressure differential of P0/P2 ≈ 1600. In practice, we observe

a pressure difference of around 300 estimated from the ratio of MOT and mag-

netic trap lifetimes. We attribute this discrepancy to outgassing from the vacuum

components and helium diffusion through the science cell walls.

C1!

CP1!

Pump!
S1!

(P≈0)!

P1! P0!

S1
*!

C2!

CP2!

Pump!
S2!

(P≈0)!

P2!

S2
*!

P3!
C3!

MOT cell!
Science cell!

Figure 3.3: Schematic of our double-differential vacuum chamber, showing the
MOT cell, science cell, transfer tube and pumps. The labels P0−3 indicate the
pressure at different positions and C1−3,P1,P2 indicate conductances.

Part Length [mm] Diameter [mm]
Conductance

[ls−1]

C1
126 10

0.72
60 16

C2 300 10 0.4

C3 160 16 2.51

CP1,CP2
210 63

33.16
90 38

S1, S2 0 63 60

S∗1, S∗2 300 – 21.36

Table 3.1: Dimensions and conductances of the main segments in our vacuum
chamber. Refer for figure 3.3 for the location of each part.
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3.2.5 Pumps and gauges

There is no one type of vacuum pump capable of establishing the required 10−14

drop between atmospheric pressure and our ultra-high vacuum and hence a se-

quence of pumps is used during the chamber’s evacuation to reach the desired

pressure range.

Roughing and turbo pumps

After initial assembly of the vacuum chamber, an all-metal right-angle valve

located near the MOT cell is used to connect a turbo-molecular pump1, with

its exhaust venting into the intake of an oil-free scroll pump2. In addition

to serving as a backing pump for the turbo pump, which cannot vent to

atmospheric pressure, this scroll pump is the first to get turned on and

brings the chamber down to a pressure of around 5× 10−2mbar in a matter

of seconds. The oil-free design of the scroll pump ensures that no liquid

finds its way out via the turbo pump into the chamber. The turbo pump

is then activated and left to pump on the chamber for the duration of the

system’s bakeout (see section 3.2.9).

Ion pumps

During the cooling phase after the bakeout, when the pressure has dropped

below ∼ 10−6mbar, two ion pumps3 are turned on. These pumps act as get-

ters for any atoms that enter the region between their cathode and anode

and hence act as pumps on the chamber. The ion pumps, after bakeout,

bring the pressure in the chamber down to below 10−11mbar and are op-

erated continuously throughout the several-year lifetime of the apparatus

in order to continuously remove from the system any excess atoms released

from our atom sources, outgassed impurity atoms from the metal compo-

nents of the chamber and any helium migrating through the walls of the

quartz science cell.

Since these pumps rely on large magnetic fields, it is in general desirable

to distance them from the main experimental region in order to minimize

the effects of stray fields, which in turn implies a reduction of their effective

pumping speed. Additional magnetic shielding4 made from nickel-coated

low-carbon steel has also been fitted to both ion pumps to reduce the stray

1 œrlikon Leybold TURBOVAC TW 70 H
2 Leybold SC5D
3 Gamma Vacuum, TiTan 75S
4 Gamma Vacuum, 75S-6S
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magnetic field near the science cell. According to the manufacturer’s spec-

ifications, at the location of the atoms in the science cell this results in a

reduction of the stray field from a value of 0.282G to 0.1G. The pumps used

in our experiment have an effective pumping speed of between 60-70 ls−1 at

pressures between 10−10-10−6mbar, respectively, They are located no closer

than 30cm from the science cell, have a quoted lifetime of 50,000 hours at

a pressure of 10−6mbar and a maximal bakeout temperature of 250℃.

Titanium sublimation pump

In addition, a titanium sublimation (Ti-Sub) pump1 is mounted near the

science cell and is occasionally activated in order to enhance the vacuum.

Titanium sublimation pumps are getter pumps often used in addition to ion

pumps to remove molecules such as H2, N2, O2, CO2 and H2O. A current

on the order of 50A is used to sublimate a thin layer of titanium onto an

inner surface of the chamber, which then reacts with active gas molecules

to form low vapour-pressure compounds that are bound to the film. The

pump is mounted so as to provide as large an area as possible on which to

deposit the titanium film. which is replenished once it has saturated. In

our case, the pump is only activated for 1.5 minutes at 47A roughly once

every six months. Since this pump produces no magnetic fields it can be

placed in close proximity to the experimental region and hence maximize

its pumping speed.

Bayard-Alpert gauge

Although the ultimate benchmark for our vacuum is the lifetime of our

trapped cloud, we are able to obtain estimates of the pressure from a

Bayard-Alpert ionisation gauge2 mounted in close proximity to the science

cell (see figure 3.6). In addition, the ion current readout from the ion

pumps can be used to estimate the pressure according to the approximate

formula: Pressure = 10−3×Current, with pressure and current in millibars

and amperes, respectively.

3.2.6 MOT cell

The region of the vacuum chamber inside which the MOT will be formed has to

fulfil several criteria. Firstly, it must be able to accommodate the three orthogonal

1 Varian, TiSub Cartridge
2 VACOM, BAIS sensor
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pairs of counter-propagating cooling/trapping laser beams (see section 3.4). The

diameter of these beams defines the capture volume of the MOT and so in order

to collect large atom numbers, large beams and windows are necessary. Secondly,

there are several considerations when choosing the separation between the coil

pair used to generate the quadrupole magnetic field, required for operation of

the MOT as well as for trapping of the atoms during transport to the science

cell. These considerations are related to the size of the coils used, which in turn

determines the spatial extension of the quadrupole field and hence the trapping

volume. In addition to a large trapping volume, the ability to produce large field

gradients at the atoms’ location is important for ensuring that as many atoms as

possible are safely transported to the science cell and are not lost en route in the

narrow tube connecting the two regions. Large field gradients are also required

in order to maximize the efficiency of evaporative cooling (see section 2.4). We

would hence like the smallest coils that provide sufficient MOT trapping volume,

and that can still be spaced such as to maximize the field gradient they produce

at a given current. The maximal field gradient at the centre of a single coil pair

is obtained when the coil separation is equal to the coil radius, as described in

appendix E. The MOT cell must also provide a path to the atomic sources as

well as a means of collecting the MOT fluorescence which serves as a probe of

the number of trapped atoms.

Figure 3.4: a) Image of the MOT chamber showing the viewports, transfer tube
(left) and atom source module (background). b) Science cell mounted on vacuum
chamber prior to the addition of the various surrounding beams and magnet coils.

With these considerations in mind, a custom non-magnetic, stainless steel

(316LN) MOT cell was designed and manufactured1. The cell consists of a cylin-

drical chamber of 110mm diameter and 44mm height, incorporating eight 23/4”

1 Fabricated by Kurt J. Lesker Company
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(DN35CF) viewports, a further 23/4” (DN35CF) flange for mounting of the atom

source module, and a smaller 11/3” (DN16CF) flange for connecting the differen-

tial vacuum tube. The viewports are made from Kodial glass, mounted in 316LN

flanges, and are AR coated on both sides with a coating optimized for 767nm

and 780nm. The viewports are distanced from the central part of the chamber

in order to allow vertical compensation coils to be mounted around the vertical

flanges as well as to allow the quadrupole coil support, mounted on the trans-

lation stage, to hold the coils as close as possible to the cell itself while having

sufficient clearance to translate them to the other end of the chamber. Figure

3.4a shows the assembled MOT cell prior to chamber bakeout.

3.2.7 Science cell

In the interests of maximizing optical access and versatility, and minimizing any

unwanted magnetic fields caused by eddy currents, we have chosen to use a sci-

ence cell consisting of a rectangular quartz cell1. This is manufactured from

highly polished, optical quality Spectrosil® Quartz in a fusing process utilizing

no intermediate bonding materials, and is annealed after assembly to remove

any residual strain. Spectrosil® Quartz (also known as Far UV Quartz) has

good transmission properties in the range 190 - 2700nm. Prior to assembly, a

broadband anti-reflection (AR) coating is applied to the external walls of the cell

to ensure high transmission at the wavelengths which are to be used for imag-

ing of both species (767 and 780nm) as well as trapping and manipulation of

the ultracold cloud (532nm and 800-1100nm). The cell’s outer dimensions are

30×30×110mm and the cell wall thickness is 5mm. This thickness was chosen

so as to avoid permeation of helium into the cell, while allowing a sufficient in-

ner volume for trapping and imaging purposes, as well as avoiding any optical

birefringence that might be caused by mechanical stress to the cell wall during

evacuation of the chamber. The outer dimensions where chosen so as to allow

placing of trapping and Feshbach coils in close proximity to the atoms in order to

allow sufficiently large fields and steep gradients to be applied. Figure 3.4b shows

the mounted science cell during chamber assembly and appendix D contains a

more detailed diagram of the cell in addition to reflectance spectra for the AR

coating at both normal and 45° incidence.

The quartz cell is connected to the rest of the vacuum chamber by means of a

1 Manufactured by Starna Scientific Ltd.
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graded glass-to-metal seal which is required in order to overcome the difference in

coefficients of thermal expansion between the steel and quartz components of the

chamber during bakeout as well as during normal operation. The DN16CF flange

attached to the glass-to-metal seal is made from non-magnetic 316LN stainless

steel in order to minimize eddy currents near the trap centre.

3.2.8 Atom sources

The vapours of 87Rb and 39K from which our MOT is loaded are released into

the MOT cell from a set of commercial vapour sources1. In total, eight sources

are currently installed in our vacuum chamber, four sources on each of two 8-pin

electrical feedthroughs2. The feedthroughs are connected to two perpendicular

arms of a T-shaped tube, the third arm of which is attached directly to the MOT

cell. After installation inside the vacuum chamber, the sources are thermally

activated during the bakeout process (which also expedites the removal of the

Indium used to seal the sources) and subsequent release of atoms is affected by

running a current of between 4-8A through the desired source. In order to accom-

modate experiments involving any of the commonly used Rb or K isotopes, we

have installed sources of four different compositions: The bosonic 85Rb and 87Rb

isotopes can be released either from one of two natural-abundance Rb sources

(72% 85Rb, 28% 87Rb, 50mg total per source3) or from one of two 87Rb-enriched

sources (98% 87Rb, 50mg total per source4). We also have two types of K sources

installed in the system: two natural-abundance sources containing 93% of the

bosonic 39K, 0.012% of the fermionic 40K and 6.7% of the bosonic 41K (60mg

total per source5), and two 40K-enriched (10%) sources (25mg total per source6).

Figure 3.5 shows a schematic of the source module and an image of one of the

two feedthroughs on which our sources are mounted.

We have learnt two valuable lessons regarding the use and mounting of this type

of vapour source. The first is that mounting of these tube-shaped containers

with the tube opening facing down is highly undesirable since the alkali metal

can partially or fully detach from the walls of the tube. In the best case this only

1 Alvatec, Alvasources®
2 Kurt J. Lesker, EFT0084033
3 AS-3-Rb-50-V
4 AS-3-Rb87(98%)-50-V
5 AS-3-K-60-V
6 AS-3-K40 (10%)-25-V - The 40K-enriched sources were produced by Alvatec, using material

processed by Technical Glass Inc. (since renamed Precision Glassblowing).
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Figure 3.5: a) Schematic of the commercial atom sources used in our system. The
source is connected to an electrical feedthrough via the contacting flaps. Prior to
bakeout the source material is kept in a pure Argon atmosphere, which is release
when the source’s indium seal is melted. b) Image of the sources mounted on the
electrical feedthrough in the system.

reduces the sublimation rate of the material due to the decreased contact with

the heated walls, and in the worst case can lead to the material falling out of

the source. Since the material in the sources is actually an alloy of the specific

alkali metal (K or Rb) with Bismuth (Bi) and has a very low vapour pressure,

this does not change the pressure in the chamber although it does, naturally,

render the source useless. Secondly, we have found that during the activation of

any source a significant amount of material is deposited on the surfaces of other

nearby sources, even though their openings face the same direction. This results

in small but noticeable amounts of Rb being released from K sources and vice

versa. To preclude this it is recommended to mount all sources of each element,

rather than a combination, on a single feedthrough.

For the experiments described in this thesis, an enriched 87Rb source was typically

fired for 1.5mins at 5A at the start of every day and for ∼ 30s during each

experimental cycle in the course of measurements, with a 39K source being fired

once, typically for 1.5mins at 6A, every several weeks.

3.2.9 Assembly and bakeout

Assembly

In order to achieve pressures in the range < 10−11mbar, it is crucial to remove as

many of the impurity atoms adsorbed onto the interior surfaces of the chamber as

well as those trapped inside the bulk of the metal vacuum components during their

production. Even very small amounts of contamination from skin oils, grease,
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lint and water vapour can prevent or hugely delay the achievement of a sufficient

vacuum and so all contact with the vacuum components during chamber assembly

must be carried out using clean latex gloves to prevent any fingerprints being left

on inner surfaces. Prior to assembly, every component is thoroughly cleaned using

acetone and rinsed with methanol, with any suitably small components also being

cleaned beforehand in an ultrasonic bath1. It is important to work quickly in

order to minimize exposure of interior surfaces to air in order to limit the amount

of water vapour condensing on them. All vacuum connections are made using

ConFlat flanges, non-reusable copper gaskets and silver-plated vacuum bolts.

Figure 3.6 shows the assembled vacuum system prior to baking.

Figure 3.6: Assembled vacuum system with turbo pump connected prior to bake-
out. The (vertical) Ti-Sub pump and the pressure gauge feedthrough pins are
visible on the left, near the science cell.

Bakeout

Following assembly, the entire chamber undergoes a baking stage during which its

temperature is gradually elevated to around 200℃. It is held at this temperature

for two weeks while continuously being pumped by the turbo and ion pumps. The

elevated temperature (exponentially) accelerates the outgassing of impurity atoms

trapped inside the metal components during their production as well the traces

1 Langford Electronics, Sonomatic 375
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of water and other organic hydrocarbons adsorbed onto the chamber surfaces

during assembly. These released atoms are then removed from the system by the

pumps. It is important to bake the entire system as any unbaked areas will act

as condensing surfaces for desorbed atoms which will then be redistributed after

cool-down.

In preparation for the bakeout, the entire system is wrapped in resistive heating

tapes1 which are connected to mains-voltage variacs2 in order to control their tem-

perature. Thermocouples are then placed against the chamber walls in several

strategically-chosen locations in order to provide local probes of the tempera-

ture. This is important in order to ensure the relatively slow (not exceeding

2-3℃/minute) and uniform heating required in order to avoid large temperature

gradients which could damage the vacuum due to differential expansion of the

materials making up the chamber. The chamber is then wrapped in several layers

of aluminium foil for insulation and the voltage across the heating tapes gradually

increased. The temperature of the thermocouples is measured using a 16-channel

thermocouple monitor3 and is monitored and logged using a LabView VI com-

municating with the thermocouple monitor over GPIB. The variac voltages are

adjusted in order to ensure smooth, uniform and gradual heating of the system to

its final temperature. Figure 3.7 shows the system during preparation for baking

and during the baking itself.

Figure 3.7: The vacuum chamber before (a) and during (b) bakeout.

The most sensitive parts of the system during baking are the ion pumps, science

cell and viewports. Above 250℃ the ion pumps’ permanent magnets start losing

magnetisation. The maximal bakeout temperature of the quartz science cell is

1 Tyco Thermal Controls, isopad TeMS2, 40W/m, max. 260℃.
2 Clairtronic, 10551
3 Stanford Research Systems (SRS), SR630
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280-300℃, while that of the Kodial viewports is 350℃. The glass-to-metal seal

on the science cell is especially sensitive to temperature gradients. The ionisation

gauge is also activated during the bakeout - once the pressure drops into its

operation range (P < 5×10−2) - in order to efficiently remove impurities released

during its initial degassing. It can be baked to 250℃ while still activated (400℃
while disconnected).

The process is reversed to bring the system back to room temperature at a pres-

sure in the region < 10−11mbar, with the turbo and roughing pumps being valved

off when the pressure is between 10−8−10−9mbar, leaving only the ion pumps ac-

tive. The measurement limit of our ionization gauge is ∼ 3 × 10−11mbar 1. To

illustrate the exponential dependence of the pressure on the chamber tempera-

ture, figure 3.8 shows a plot of the logarithm of the pressure, as measured by

the ionization gauge, against the inverse temperature, measured by a thermocou-

ple close to the gauge, during system cool-down. The (approximate) linearity of

this plot is consistent with the Clausius-Clapeyron relation, dP/dT = L/(T∆V ),

where P is the pressure, T the temperature, L the latent heat and ∆V the volume

change.
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Figure 3.8: Natural logarithm of the pressure, ln(Pgauge), during chamber bake-
out, plotted against the inverse temperature, 1/T. The pressure spikes around T
≈ 150℃ and 200℃ are due to activation of the Ti-Sub pump during the bakeout.

1 This limit is set by the pump’s so-called ‘x-ray limit’ at which the pressure-dependent
ion current becomes smaller than the pressure-independent electron current caused by the
photoelectric effect
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Note regarding vacuum leaks:

As an additional note, it is worth mentioning that at some point during the

system’s day-to-day operation, a small leak was introduced by a collision

between the translating quadrupole coil mount and one of the horizontally-

mounted flanges on the MOT cell. The leak was opened at the joint between

the MOT cell and the transfer tube and was detected by spraying the region

with helium and observing the sharp rise in system pressure. Rather than

re-bake the chamber, we opted to try and seal the leak using a purpose-

made silicon resin sealant1. The sealant is applied directly to the leak and

requires several days to fully cure at room temperature. This successfully

restored UHV pressure and has not presented any problems in the several

years since its application, with typical 1/e lifetimes of 300s being achieved

for thermal clouds in the science cell.

3.3 Laser System

The light used for laser cooling, optical pumping (see section 3.6) and imag-

ing (see section 3.14) of the atom cloud is required to address specific atomic

transitions and hence must possess a narrow linewidth compared with both the

Doppler width and the splitting between the hyperfine states involved. Laser

linewidths are typically stabilized to below the linewidth of the relevant atomic

transition, which for the cooling transitions of 87Rb and 39K are (2π×) 6.07MHz

and 6.04MHz, respectively. Linewidths on the order of 1MHz and below are eas-

ily achieved by commercially available stabilized diode lasers. Our laser system

consists of a combination of external-cavity-stabilized diode lasers (ECDL) and

tapered amplifier (TA) modules. The ECDLs emit light with a linewidth below

1MHz, a mode-hop-free tuning range typically between 20-50GHz and powers

in the range 80-150mW, while the TA chips are designed to amplify the power

of the diode lasers to around 1W while preserving their spectral characteristics.

An overview of the laser system is shown in figure 3.11 in addition to the more

detailed description below. We also make use of far-off-resonant light to gener-

ate the optical dipole potential used in our optical trap (section 3.10), as well

as for our experiments with optically-plugged magnetic traps (appendix B) and

two-dimensional confinement (appendix F).

1 Kurt J. Lesker, KL-5-5B
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3.3.1 Saturated absorption and locking scheme

Despite their narrow linewidths and relative stability, ECDL lasers are not im-

mune from unacceptable long-term frequency drifts. In order to preclude these

drifts and to ensure that the lasers are tuned precisely to the desired frequency,

all our diode lasers are actively locked to atomic transitions in a vapour cell con-

taining a sample of the desired atomic species (Rb or K). The locking scheme

employs the well-known technique of saturated-absorption spectroscopy [90, 148]

in order to obtain Doppler-free absorption spectra from which an appropriate

error signal can be derived and fed back to the laser in order to stabilize its

frequency. Figures 3.9 and 3.10 show the saturated absorption spectra obtained

for 87Rb and 39K, respectively, using the beam configurations illustrated in figure

3.11 and described in the following two subsections.
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Figure 3.9: Saturated-absorption spectroscopy on the |F = 2〉 → |F ′〉 transition
on the D2 line of 87Rb. (a) Absorption spectrum showing saturated-absorption
peaks superposed on the background Doppler spectrum. The peaks labelled 1,
3 and 6 are the |F = 2〉 → |F ′ = 1, 2, 3〉 transitions, respectively, and the peaks
labelled 2, 4 and 5 are the |F = 2〉 → |F ′ = 1/2〉, |F = 2〉 → |F ′ = 1/3〉 and
|F = 2〉 → |F ′ = 2/3〉 crossover peaks, respectively. Figure (b) shows the Doppler
spectrum in the absence of saturated absorption and (c) the signal resulting from
subtraction of the latter from the former. The relative positions of the peaks can
be deduced from the spacings indicated in figure (c), with crossover peaks located
halfway between the participating transitions.

3.3.2 Rb lasers

The 87Rb cooling light is derived from an integrated master-oscillator-power-

amplifier (MOPA) unit1, providing ≈800mW of 780nm light at its main output.

The unit’s rear auxiliary output provides several mW in total, part of which is

1 Toptica, TA100
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Figure 3.10: Saturated Absorption spectroscopy on the D2 transition of 39K. The
figure shows the large |F = 1〉 → |F ′〉 / |F = 2〉 → |F ′〉 crossover dip to which we
lock our 39K master laser. Shown are the saturated absorption curves at vapour
cell temperatures of 19.8℃ (orange), 35℃ (green), 40℃ (blue), 45℃ (red) and 50℃
(black).

sent to a saturated-absorption locking setup and part of which is used for imag-

ing light. The saturated-absorption setup contains a double-pass AOM driven at

approximately 98MHz and is used to offset-lock the laser frequency to 2×98 =

196MHz above1 the |F = 2〉 → |F ′ = 2, 3〉 crossover peak which is located approx-

imately 133MHz below the |F = 2〉 → |F ′ = 3〉 cooling transition i.e. 63MHz blue

detuned. All subsequent frequency tuning of the cooling, imaging and pumping

beams is carried out with this double-pass AOM in order to preserve the beam

alignment. The imaging beam is then brought into resonance by another single-

pass AOM operating at around 67MHz, while the cooling beam is brought to

a detuning of approximately -3Γ by another single-pass AOM operating near

83MHz. The light used for optical pumping (see section 2.3) is split off after this

AOM and is passed through another single-pass AOM at 200MHz in order to

be able to bring it into resonance with the |F = 2〉 → |F ′ = 2〉 transition during

optical pumping.

The 87Rb repump light is generated by a separate ECDL2, locked via a separate

saturated-absorption setup to the |F = 1〉 → |F ′ = 1, 2〉 crossover peak, 78.5MHz

below the |F = 1〉 → |F ′ = 2〉 repump transition and brought into resonance by

a single-pass AOM operating at approximately 78MHz.

1 i.e. at a higher frequency
2 Toptica, DL100
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Figure 3.11: Overview of the laser system used to generate the cooling, repump,
imaging and pumping beams used in the experiment. See text for a detailed de-
scription.
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3.3.3 K lasers

All the 39K beams are derived from a single ECDL1, providing roughly 80mW

of 767nm light, with the cooling and repump beams seeding a TA unit2 with a

maximal output power of approximately 1.5W. Light is split off from the ECDL

output and a double-pass AOM operating at 87MHz is used to offset-lock the

laser 2×87 = 174MHz below3 the |F = 1, 2〉 → |F ′〉 crossover dip, which is itself

231MHz red (blue) detuned from the |F = 2〉 (|F = 1〉) states i.e. the laser gets

locked approximately 57MHz red of the |F = 1〉 → |F ′〉 transition. The light not

used for locking is again split into two beams, with one traversing a double-pass

200MHz AOM to generate the cooling/imaging/pumping beam and the other

encountering a single-pass 40MHz AOM to bring this repump beam closer to

its final frequency. The cooling and repump beams are them overlapped on a

polarizing beamsplitter cube (PBS) and the overlapped, orthogonally polarized

beams are then rotated with a halfwave plate in order to tune the balance between

the cooling and repump power seeding the TA. In order to ensure perfect spatial

overlap of the MOT beams for both 39K and 87Rb, we overlap the combined 39K

cooling/repump beam with the 87Rb cooling beam. The two beams are spatially

overlapped using a PBS cube and their polarizations are aligned prior to fibre

coupling using a dichroic waveplate4, designed to act as a half-wave plate at

767nm and a full-wave plate for 780nm. All coupling is done into polarization-

maintaining (PM) single-mode fibres. The 39K imaging and pumping beams are

likewise overlapped with their 87Rb counterparts before being coupled and sent

to the vacuum system, while the fibres containing the repump and cooling light

are sent to the fiberport cluster located near the vacuum chamber.

3.3.4 Shutters

Complete extinction of laser beams requires the use of opaque mechanical shutters

since AOMs always exhibit small amounts of leakage light into the diffracted

beams. We use Thorlabs5 and Sunex6 shutters, whose characteristic opening and

shutting times are on the order of 1-2ms. The vibrations caused by the Thorlabs

1 Toptica, DLPro
2 Sacher Lasertechnik, TEC-400
3 i.e. at a higher frequency than the |F = 2〉 → |F ′〉 transition.
4 LENS-Optics GmbH, W2M25-767&780
5 Thorlabs, SH05
6 Sunex Inc., SHT934
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shutters can temporarily perturb the locking of nearby lasers and are reduced

by mounting them on sorbothane shock-absorbing posts. In addition we have

also made use of home-made shutters, produced from voice-coil actuators found

in generic hard disk drives. The design follows that of the Melbourne group1

[149, 150].

3.3.5 AOMs and drivers

Fine adjustment of laser frequencies, on the order of . 1MHz, is accomplished

using acousto-optic modulators (AOM). These devices rely on Bragg-like scatter-

ing of an incident laser beam from a travelling refractive-index grating, generated

by an RF signal in the range f ∼20-400MHz, to shift both the frequency and

the direction of the outgoing beam and hence can be used to control the beam’s

detuning as well as acting as high-speed switches, respectively. Most AOMs al-

low frequency shifts over a range of ±20% of their centre frequencies with the

deflection speed of the models used in our experiments2 depending on the beam

width roughly as 15ns/100µm.

Figure 3.12: (a) Dual-channel AOM driver interior. Visible for each channel from
right to left are the VCOs3, attenuators4, switches5and amplifiers6. Also visible are
the power supplies and fans (top) and frequency counters (bottom). Two amplifiers
of different gains are used in this driver in order to drive AOMs requiring differing
amounts of drive power without risking damage due to excess power. (b) Driver
front panel.

1 http://optics.ph.unimelb.edu.au/atomopt/shutter/shutter.html
2 Crystal Technology Inc., 3080-125, 3110-110, 3200-115 and AA Opto-Electronic
3 Mini-Circuits, ZOS-50, ZOS-100, ZOS-200, ZOS-300
4 Mini-Circuits, ZX73-2500-S+
5 Mini-Circuits, ZYSWA-2-50DR
6 Delta RF Technology, LA2-1-525-30 and Mini-Circuits, ZHL-3A, ZHL-32A

http://optics.ph.unimelb.edu.au/atomopt/shutter/shutter.html
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The electronics required to drive an AOM consist of a voltage-controlled oscillator

(VCO), a voltage-controlled attenuator and an amplifier which is required in order

to generate the ∼1W of RF power required to drive most commercial AOMs at

their maximal diffraction efficiency of 80-90%1. Figure 3.12 shows the internal

layout of one of the drivers constructed for use in our experiment.

3.3.6 Fiberport cluster

In order to divide the cooling and repump light into the six separate beams

required for operation of our MOT, we have made use of a commercial fiberport

cluster 2. This is a compact, modular assembly of fibre couplers, half-wave plates

and polarizing beam splitters (PBS) designed to accept two beams at different

input ports and to allow their relative intensities to be adjusted at each of six

output ports by adjusting the alignment of the six half-wave plates. All inputs

and outputs are coupled into polarization-maintaining single-mode optical fibres

and the light intensity at both inputs can be monitored from built-in photodiodes

to which ∼1% of each input beam is diverted. When calculating the powers at

each of the six outputs, it is important to take account of the imperfections in

the PBS cubes, which typically reflect ∼5% of the p-polarized light together with

∼100% of the s-polarized component.

The triple-wavelength beam containing the 39K cooling/repump frequencies and

the 87Rb cooling light is sent into the first fiberport-cluster input while the 87Rb

repump light is sent into the second input. Due to the PBS cube imperfections,

perfect balancing of all the power from one input, i.e. ∼ 17% at each output,

results in the second input being distributed between the outputs with values

between 7-25% of the total power at this input. Since the precise balancing of

the (relatively weak) 87Rb repump light is not crucial to the operation of the

MOT, we take care to balance the triple-wavelength ‘cooling’ beam outputs, and

allow the Rb repump to remain unbalanced.

3.4 Magneto-optical trap (MOT)

The preceding sections described our vacuum system and laser setup, both of

which play a role in multiple stages of the experiment. We now turn to describing

1 As opposed to switching speed, maximal diffraction efficiency grows with beam diameter.
2 Shäfter + Kirchhoff GmbH, Fiber Port Cluster 2-to-6
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in more detail the individual stages of the experimental sequence, from collection

and cooling in the dual-species MOT via sympathetic cooling in the science cell

and ending with evaporative cooling in the optical dipole trap and time-of-flight

imaging.

3.4.1 MOT laser parameters

As mentioned in section 2.1.4, the unresolved excited-state hyperfine manifold in
39K leads to strong pumping of atoms into the |F = 1〉 state (requiring comparable

‘cooling’ and ‘repump’ intensities) and potentially to strong heating due the blue-

detuning from nearby states (requiring detuning of both cooling and repump

beams from the entire excited-state manifold).

For 39K during the MOT phase, we use detunings of -7.6Γ and -4.6Γ from the 39K

|F = 2〉 → |F ′ = 3〉 and |F = 1〉 → |F ′ = 2〉 transitions, respectively. However,

in order to achieve lower 39K temperatures prior to magnetic trapping, during

the last 40 ms of the MOT stage, the two detunings are reduced to -1.5Γ and

-4.1Γ, respectively, while the repumping intensity is also slightly reduced. This

results in lower temperatures of several hundred µK without an appreciable drop

in atom number [49]. For 87Rb during typical MOT operation, the cooling light

is detuned by -3.1Γ from the cycling transition, while the repump light is close

to resonance with the |F = 1〉 → |F ′ = 2〉 transition. Under these conditions,

the atom numbers in our single-species 87Rb and 39K MOTs saturate at roughly

5× 109 and 1× 109, respectively, after ∼ 10s of loading. Simultaneous trapping

of 87Rb and 39K results in a roughly 15% reduction in 87Rb number and a factor

of ∼3 reduction in the 39K number due to light-assisted interspecies collisions.

3.4.2 MOT field gradient

In optimizing the size of the 87Rb and 39K MOTs individually, we have found

field gradients of 9.6G/cm and 8G/cm1, respectively, to yield the largest MOTs

for our laser parameters. However, when both species are trapped together, their

relative abundances also influence the optimal conditions and we have empirically

found a weaker gradient of 6.4G/cm to provide the best results in terms of final
39K condensate size.

1 Along the ‘strong’ axis, connecting the coil centres.
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The MOT stage is followed by 6ms of optical molasses. During this step the
87Rb cooling light is taken further away from resonance to -4.9Γ , the 39K cooling

beam detuning is left at -1.5Γ and the 39K repump detuning is increased to -4.1Γ.

Table 3.2 summarizes the laser and magnetic field parameters during the MOT

and molasses stages.

Laser parameters

Beam Detuning [Γ] Total power (at atoms) [mW]

MOT (duration: ∼ 20s)
87Rb Cooling -3.1 130
87Rb Repump 0 10

39K Cooling -7.6 (-1.5 during final 40ms) 155
39K Repump -4.6 (-4.1 during final 40ms) 155

Molasses (duration: 6ms)
87Rb Cooling -4.9 60
87Rb Repump 0 10

39K Cooling -1.5 110
39K Repump -4.1 10

Beam diameter (1/e2) [cm]

∼3

Field gradient (strong) [G/cm]

6.4 (9.6 during final 40ms)

Atom number (approx.)

5× 109 (87Rb-only) 1× 109 (39K-only) 4× 109/3× 108 (87Rb-39K)

Table 3.2: Summary of MOT and molasses parameters. Detunings for the 87Rb
beams refer to the |F = 2〉 → |F ′ = 3〉 and |F = 1〉 → |F ′ = 2〉 transitions for the
cooling and repump beams, respectively. Detunings for the 39K beams refer to
the entire excited-state hyperfine manifold, |F = 2〉 → |F ′ = 3〉 and |F = 1〉 →
|F ′ = 2〉, respectively.

3.5 Quadrupole and compensation coils

Here we describe the electromagnetic coils used to establish the quadrupole field

for our MOT as well as the compensation coils used for nulling stray fields in the

MOT region.



78 Design, assembly and performance of our 39K-87Rb apparatus

3.5.1 Quadrupole coils

In addition to providing the magnetic field for our MOT, our main quadrupole

coils are also responsible for confining the atoms during transport to the science

cell and during the initial evaporative cooling stage, as well as generating the

quadrupole component of our quadrupole-Ioffe configuration (QUIC) magnetic

trap, in which sympathetic cooling of 39K by 87Rb takes place.

The coils are wound from insulated, hollow, circular copper tubing (OD: 4mm,

ID: 2.8mm) and consist of 40 turns (4×10) with an inner diameter of 51mm and

an outer diameter of 135mm. They are mounted 100mm apart (at their closest

point), as close as possible to anti-Helmholtz configuration in order to maximize

their gradient (see appendix E), and provide a field gradient of 160G/cm along the

vertical (strong) axis when run at a current of 200A. The wound coils are coated

in protective epoxy and mounted in a heavy-duty aluminium support designed to

firmly hold the coils, enable their mounting onto the translation stage, eliminate

mechanical vibrations due to water flow and magnetic forces, and ensure sufficient

optical access both at the MOT and science cell ends of the apparatus (see figure

3.13). A narrow slit is machined into the brackets supporting the coils themselves

in order to avoid eddy currents being formed near the location of the atoms when

the coils are turned off.

Figure 3.13: (a) Quadrupole coil pair mounted on the translation stage and (b)
MOT compensation coils mounted on the MOT cell flanges. The red pipes carry
current and cooling water to the quadrupole coils.

The two coils are connected in series and their current is provided by a 6kW

(30V, 200A) DC power supply1 down 35mm2-gauge cables, connected to the coils

1 Delta Elektronika, SM 30-200
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via copper adapters designed to also allow easy connection of water-cooling hoses

to each coil. The current is controlled remotely by an analog signal to the power

supply and is switched digitally using a high-voltage IGBT1.

3.5.2 Coil safety

The IGBT driver circuit is also responsible for switching off the current in the

event of the coils overheating or a drop in the cooling water flow. A thermistor2

with a threshold temperature of 60℃ is mounted on each quadrupole coil and

a third thermistor is mounted to the large copper heatsink to which the IGBT

is bolted. A varistor is connected in parallel with the IGBT in order to shunt

away any current from transient voltage spikes that would otherwise damage the

IGBT. In addition, a flow switch3 near the coils is used to ensure the flow does

not drop below 0.5lmin−1. These fours signals must all be normal in order for

current to be allowed to pass through the coils.

3.5.3 Compensation coils

The various sub-Doppler cooling mechanisms at work - and hence the lowest

temperatures attainable - during optical molasses are sensitive to both the di-

rection and magnitude of any magnetic fields present [90, 151]. Transfer of the

maximal number of atoms, with the highest possible phase-space density, into

the purely magnetic trap further requires the MOT to have a regular shape, its

centre to overlap with that of the magnetic trap and its free-space expansion

to be isotropic and determined only by the cloud temperature. Furthermore, a

well-defined quantization axis is required during the optical pumping stage prior

to magnetic trapping (see section 2.3).

Meeting these criteria requires the cancellation of any stray magnetic fields at the

location of the atoms, arising from the earth’s magnetic field or nearby instru-

mentation4. Field compensation is accomplished by three orthogonal coil pairs

mounted directly onto the flanges of the MOT cell through which the cooling and

repump beams are directed (see figure 3.13b). The pair providing the vertical

compensation field is mounted around the top and bottom flanges of the MOT

1 SEMIKRON, SEMiX 402GB066HDs
2 EPCOS, B59901D0060A040
3 Gentech International, FS-10
4 Ion pumps in particular produce significant static magnetic fields
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cell. They consist of 9 turns (3×3) of 1mm-diameter enamelled copper and have

an inner diameter of 90mm. The other two pairs consist of 40 turns (5×8) of

1mm-diameter enamelled copper wire with an inner diameter of 72mm. Each

horizontal pair produces a field of roughly 0.6G/A at its centre and the vertical

pair generates roughly 1.7G/A. The currents to these coils are provided by a

3-output, low-ripple power supply1.

Despite not being mounted precisely in Helmholtz configuration due to space

constraints, the coil separation was chosen so as to achieve as uniform a field

in the trap centre as possible, with the non-uniformity estimated numerically

to be around -0.012GA−1cm−2 for the horizontal pairs and -0.002GA−1cm−2 for

the vertical pair. The independently-controlled currents in each coil pair were

adjusted in order to optimize the number and temperature of atoms transferred

into the quadrupole magnetic trap.

Note

For a description of the Feshbach, compensation and guide-field coils

mounted about the science cell, see section 3.11.

3.6 Optical pumping and magnetic capture

Our optical pumping and magnetic capture stages proceed as follows:

• At the end of the 6ms molasses stage, all cooling beams are extinguished

and both repump beams are left on for a further 1ms in order to transfer

all atoms into their respective |F = 2〉 manifolds. The guide field is then

given 800µs to ramp up before both pumping beams are switched on for

200µs. The repump beams are only on for the first 100µs.

• Immediately after the optical pumping stage described above, all lights are

extinguished and the quadrupole coils are abruptly switched on at 40 G/cm

(strong axis) in order to capture the atoms, and then linearly ramped up to

160 G/cm in 50ms. The capture efficiency is typically ∼80% for 87Rb and

∼65% for 39K.

1 Hameg Instruments, HM7042-5
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3.7 Transport

3.7.1 Background - moving vs. stationary coils

Once the atoms have been optically pumped and magnetically trapped, they

must be transported over a distance of roughly 75cm to their final position within

the science cell. There exist several experimental approaches to the problem of

transporting laser-cooled atoms from one region of an experimental apparatus to

the other. This transport should transfer the maximal number of atoms while

remaining as adiabatic as possible. Some of the schemes that have been developed

and previously demonstrated include:

• Use of moving red-detuned optical tweezers [152, 153]

• Use of resonant ‘push beams’ in conjunction with a 2D ‘atomic funnel’ MOT

to create a slow atom beam [154, 155, 156, 157, 57, 158, 159]

• Use of a chain of static magnetic coils in which coordinated control of the

currents allows the creation of a moving magnetic trap [146, 160]

• Use of a single magnetic coil pair, translated by means of a mechanical

stage and confining the atoms magnetically for the duration of the transport

[161, 162, 163, 164].

Given the vibrational stability issues encountered in translation of the lenses used

in moving optical tweezers [152, 165], the need for multiple additional laser beams

and magnetic coils associated with the ‘push beam’ method, and the many coils

and sensitive current optimization required for the static coil scheme, we opted

to implement a moving coil system in our experiment.

Advantages This scheme has the advantages of conceptual simplicity, ease of

setup and optimization and the use of only a single coil pair, significantly

reducing the construction, mounting, alignment and water-cooling burdens

compared to the static coil method.

Disadvantages The main disadvantages of the moving coil method are the need

for care to minimize vibrations due to the coil translation and the extra

volume swept out by the translation stage and any coil mounts, which

would normally be available for mounting components.

Both of these disadvantages can be ameliorated through prudent design of the

vacuum chamber geometry, the coil mount and the transport sequence. The
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high-precision translation stages and control/feedback electronics commercially

available today allow for great accuracy and repeatability, and we have found this

method to perform very well in our experiments.

3.7.2 Track details

The translation stage selected for our transport system1 is capable of 900mm of

travel, is fitted with an optical linear encoder with 0.5µm resolution2, a 6000rpm

brushless servo motor3 and is controlled via a servo drive/controller4 communi-

cating with our control PC.

An important selection criterion is the use of a ball-screw-based stage instead of a

linear-motor-based stage to ensure that any magnetic field generated by the track

is localized as far as possible from the science cell. The magnets in a linear-motor

translation stage are located along the whole length of the track as well as on

the moving stage itself, whereas a ball-screw stage relies on a motor located at

its far end to rotate a precision screw which translates the stage along the track.

We position the motor at the MOT-cell end of the chamber, as far as possible

from the science cell. We have also found it crucial to to ‘de-energize’ the track

(i.e., shut down the motor) immediately after the transport stage to eliminate

electronic RF noise emitted by the motor which was observed to severely reduce

the number of trapped atoms.

The quadrupole coils are mounted to the translation stage via an aluminium sup-

porting ‘arm’ (see figure 3.13b), which also provides a channel for the electrical

and water connections to the coil tubing. These are held within a flexible, artic-

ulated cable housing5 one end of which is anchored to the optical table and the

other end of which is free to follow the track motion, keeping the water hoses and

electrical cables out of any beam paths while providing strain relief and sufficient

bend radius.

1 Parker 406XR series. Full part number: 406.900XRSD5.H14L13.C10.M29.E3.B1.R1.P1,
from which the various features and specifications can be extracted.

2 Renishaw, RGH24Z30F00A
3 Part number: SMH82.6003.8.14.21D65.2
4 Compax3, C3 S063 V2 F10.I12.T11
5 igus, E-Chain System®, 2500.09.125.0
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3.7.3 Transport parameters and efficiency

The 741.21mm transfer takes approximately 1.7s and the parameters used are

given in Table 3.3.

Travel distance jerk acceleration velocity

741.21 mm 50,000 mm/s3 5,000 mm/s2 500 mm/s

Table 3.3: Transport parameters. Jerk is the time-derivative of the acceleration,
and the acceleration and velocity given represent peak values.

We typically transfer well over 50% of the atoms from the MOT to the science cell,

with the transfer efficiency for 39K lower than for 87Rb since its higher temperature

leads to removal from the trap via contact with the transfer tube walls. The

temperature of these ‘evaporated’ atoms can be estimated by equating the spatial

extent of the cloud, rcloud ≈ kBT/µBB
′, with the transfer tube radius, rtube =

0.5cm. For our gradient of B′ ≈ 80G/cm along the weak trap direction, this

gives a temperature of Tevap ≈ 2.7mK.

3.8 QUIC trap

Our 39K cloud must ultimately be transferred into a purely optical trap prior to

condensation in order to access the desired Feshbach resonance in the magneti-

cally anti-trapped |1, 1〉 state. However, the 39K sample must be cooled prior to

this transfer in order to ensure the maximal initial atom number in the optical

trap. This is accomplished via sympathetic cooling with 87Rb and our precise

cooling targets are described in section 3.9. With 87Rb alone it is possible to

evaporate directly in the quadrupole trap in the presence of an optical ‘dimple’

potential [166] offset from the trap centre, and in this way produce optically-

trapped condensates of 5 × 105 87Rb atoms with less than 10s of evaporation.

However, 39K cannot be effectively cooled sympathetically in similarly short evap-

oration sweeps due to the relatively small K-Rb interspecies background scatter-

ing length aK-Rb ' 36a0 [58], where a0 is the Bohr radius a0 ≈ 0.53Å, compared

to aRb ' 99a0 [167] for 87Rb.

As mentioned in section 2.3, the region of very low magnetic field at the

centre of the quadrupole trap restores the degeneracy of the Zeeman states and

allows adiabatic transitions to untrapped states which are rapidly lost from

the trapping potential. Long evaporation sweeps in the quadrupole trap are
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therefore prohibited due to loss of 39K atoms via such Majorana flips as well

as via inelastic collisions with |2, 1〉 87Rb atoms likewise created by Majorana

transitions. Here too, several schemes have been proposed and demonstrated in

order to address the presence of these Majorana spin flips by ensuring that the

atoms do not experience a region of zero magnetic field. In our system, we have

chosen to implement a so-called Quadrupole-Ioffe configuration (QUIC) trap,

a Ioffe-Pritchard-type trap first realised by Esslinger et. al. in 1998 [168] and

subsequently used by many other groups. This configuration offsets the trap

minimum to a positive value while converting the linear quadrupole trap to a

harmonic trapping potential.

56mm!

62mm!

152mm!

100mm!

135mm!

51mm!

+z!

+x!

+y!

Figure 3.14: Schematic of the QUIC trap coil configuration in our system. The
quadrupole coil pair in conjunction with the Ioffe coil generate the offset harmonic
potential, with the rectangular anti-bias coil pair opposing the field along the axis
of the Ioffe coil. See table 3.4 for a summary of the coil parameters.

3.8.1 Trap configuration

The QUIC configuration consists of a pair of coils producing a quadrupole field

together with a third coil whose axis is oriented perpendicular to that of the

quadrupole coils as shown in figure 3.14. This third coil is known as the Ioffe coil

and is responsible for producing the offset harmonic confinement when its field is

superposed with the quadrupole field.
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In addition to the Ioffe coil, we make use of an additional ‘anti-bias’ Helmholtz

coil pair, also shown in figure 3.14, to provide a uniform field in the opposite

direction to that created by the Ioffe coil along its axis. This anti-bias field is

used in order to provide better control over the trapping potential during loading

of the QUIC trap and the subsequent transfer into the optical trap.

3.8.2 Pros and cons

The quadrupole field used in our QUIC trap is generated by the same quadrupole

coil pair used in our MOT and transport stages. Since the atoms are already

confined in this quadrupole field upon arrival in the science cell, conversion into

the QUIC trap is relatively straightforward and efficient, consisting of simply

ramping up the Ioffe and anti-bias coils so as to retain the largest number of

atoms possible in the resulting harmonic potential. Other advantages of the QUIC

configuration include its simplicity, the relatively large optical access afforded by

the reduced number of coils compared to other configurations and the good mode-

matching that can be achieved between this type of trap and the gaussian intensity

profile of the optical dipole trap due to the harmonic nature of the confinement

(as opposed, for example, to the optically plugged trap discussed in appendix B).

Disadvantages of this configuration are the weaker confinement compared to the

quadrupole trap, which makes evaporative cooling less efficient as mentioned in

section 2.4, as well as the fact that during its operation the centre of the QUIC

trapping potential is displaced from the quadrupole trap centre in the direction of

the Ioffe coil, potentially reducing optical access to the cloud. We overcome this

problem by evaporating in the displaced QUIC before ramping up the appropriate

currents in order to temporarily restore the cloud to the centre of the cell prior

to loading of the optical trap.

3.8.3 Trapping potential

The QUIC trap fields are similar to those produced by a standard Ioffe-Pritchard

configuration near the trap minimum [169], consisting of a harmonic potential

with a non-zero offset. To obtain an estimate for the trapping frequencies, we

can use the near-origin approximation for the field produced by a single coil1 to

1 See equation E.3 in appendix E
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write the field produced by the Ioffe coil as

BIoffe
ax = B0 +B′axx+B′′ax(x2 + (y2 + z2)/2)

BIoffe
rad =

1

2
B′ax

√
y2 + z2 −B′′axx

√
y2 + z2 (3.4)

where we have written the radial coordinate as ρ =
√
y2 + z2. B′ax is the ax-

ial field gradient, B′′ax is the axial field curvature and we have used the coordi-

nate system of figure 3.14. This field is superposed with that of the quadrupole

trap Bquad = B′(x, y,−2z) and the axial gradient B′ax is chosen to cancel the

quadrupole gradient B′ along the Ioffe coil axis at the quadrupole centre (i.e.

B′ax = −B′). Combining the two fields and keeping only terms to second order

in position yields the following for the total field

|Btot| =
√

B2
Ioffe + B2

quad

≈ B0 +B′′axx
2 +

1

2

((
3
2
B′
)2

B0

−B′′ax

)
ρ2 (3.5)

where we have reinserted the radial coordinate,ρ. The trapping potential hence

has the form

U = gFmFµBB ≈ U0 + (1/2)mω2
axx

2 + (1/2)mω2
radρ

2 (3.6)

with the trapping frequencies given by

ωax =

√
2gFmFµBB′′ax

m
ωrad =

√
gFmFµB

m

((
3
2
B′
)2

B0

−B′′ax

)1/2

(3.7)

For typical values of the bias field, quadrupole gradient and axial curvature used

in our sequence (B0 = 5.3G, B′ = 64Gcm−1 and B′′ax = 120Gcm−2, respectively),

this predicts trapping frequencies of ωax = 2π×21(14)Hz and ω⊥ = 2π×76(51)Hz,

respectively. Since the radial frequency is usually significantly higher than the

axial frequency, atoms in the QUIC trap occupy an elongated, cigar-shaped po-

tential. Figure 3.15a shows the magnetic field profile along the axial direction as

the current in the Ioffe coil is increased in 5A increments with the quadrupole

gradient held at 80G/cm. In addition to the primary minimum moving towards

the Ioffe coil, a second field minimum appears outside the science cell and the two

minima approach each other until eventually joining to form an offset harmonic
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potential. There is therefore a risk during the Ioffe coil ramp-up, that atoms will

collide with the cell wall on their way to the secondary minimum. The intuitive

role of the anti-bias field is to ensure that the primary minimum is deep enough

during the Ioffe-coil ramp-up such that when atoms do start spilling into the sec-

ondary minimum it is already within the science cell and the atoms are not lost

via collisions with the cell wall, as illustrated for our experimental parameters in

figure 3.15b.
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Figure 3.15: Field profile along the Ioffe coil axial direction (a) without and (b)
with the anti-bias field contribution. The red dashed line shows the position of the
Ioffe coil and the shaded regions show the locations of the science cell walls. In
(a), the Ioffe current is increased (light to dark, 0-25A) in 5A increments with the
quadrupole gradient held at 80G/cm. Atoms spilling into the secondary minimum
collide with the cell wall. Figure (b) shows the profile at various points (light to
dark) through our actual experimental sequence, with the anti-bias field, directed
along −z, ensuring that atoms entering the secondary minimum do not collide with
the cell wall.

Figure 3.16 shows images of the cloud in the QUIC trap taken perpendicular to

the Ioffe coil axis (i.e. vertically in the lab frame) and showing a sequence with

progressively increasing anti-bias field. As the anti-bias field is increased, with

the Ioffe field remaining unchanged, the initially-tight axial confinement gradually

relaxes until the dual minima can clearly be seen.

3.8.4 Ioffe coil and trap loading

Our Ioffe coil is located between the two quadrupole coils, at a distance of 2mm

from the outer wall of the science cell along its long edge (see figure 3.14). The

coil consists of 18 turns (3×6, axial×radial) of 1mm-diameter enamelled copper



88 Design, assembly and performance of our 39K-87Rb apparatus

Figure 3.16: Finding the anti-bias voltage in the compressed QUIC trap to provide
maximal compression without creating a magnetic field zero. The trapped cloud is
imaged perpendicular to the trap axis and the Ioffe coil is located at the bottom
of the image. From top left to bottom right: 22.77G, 23.16G, 23.82G, 24.49G,
25.15G, 25.81G, 26.47G and 27.14G

wire, and has a clear inner diameter of 10mm. It is mounted on a water-cooled

copper block with a clearance hole through which both the axial imaging and the

2D confinement beams can access the cell.

Conversion of the quadrupole trap to a QUIC configuration as efficiently as pos-

sible requires coordination between the currents in the quadrupole, Ioffe and

anti-bias coils. The transfer sequence lasts 5s in total and is shown in figure 3.17,

with the axial field value at various points during the transfer shown in figure

3.15.

With the quadrupole coils at 200A (80G/cm, weak axis), the Ioffe coil is ramped

up over 500ms to a current of 24A while the anti-bias coil pair is simultaneously

ramped up to 19.3A (28G) in order to counter the movement of the trap minimum

towards the cell wall caused by the Ioffe coil field. The current in the quadrupole

coils is then reduced to 160A (64G/cm, weak axis) over 250ms, after which the

anti-bias current is ramped down to 3.4A (5G) over 500ms and finally, 250ms

later, the Ioffe coil current is gradually ramped down to its final value of 19.7A

over 3.5s, during which the trap centre moves gently towards the cell wall, causing

some removal of the hottest atoms from the trap.

With this procedure 4 × 108 87Rb and up to 4 × 107 39K atoms are loaded into
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Figure 3.17: QUIC transfer sequence. Currents and field values of the quadrupole,
Ioffe and anti-bias coils during conversion of the quadrupole field into the QUIC
configuration.

the QUIC trap and these final currents result in trapping frequencies of ωz/2π =

14 (21)Hz axially and ωr/2π = 43 (64)Hz radially with respect to the Ioffe coil

axis for 87Rb (39K) in the |2, 2〉 ground state, in the presence of the 5G bias

field. In addition to numerical simulation, trapping frequencies in the QUIC trap

were determined by measuring the differential gravitational sag, ∆z ≡ zRb − zK ,

between the trapped 87Rb and 39K clouds, from which the frequencies can be

obtained using ∆z =
(

1− mK

mRb

)
g
ω2
Rb

.

3.9 Sympathetic cooling

Our sympathetic cooling target is to bring as large a number of 39K atoms as

possible to a temperature of approximately 5µK. This goal is motivated by two

factors:

1. As discussed in section 3.10, this temperature coincides with the optimal

temperature found for loading the largest possible 39K samples into our
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optical trap.

2. In our QUIC trap, the difference between the gravitational sags, g/ω2
r , for

87Rb and 39K is 73µm. This corresponds to the (vertical) thermal radii

for the two species, RRb
T ≈ RK

T , at a temperature of roughly 4µK, where

RT =
√
kBT/ (mω2

r). Below this temperature, the reduced spatial overlap

between the species renders sympathetic cooling inefficient.

The forced evaporation of the 87Rb buffer gas is carried out by inducing the

|F = 2,mF = 2〉 → |1, 1〉 transition between the |2, 2〉 state of our trapped atoms,

and the anti-trapped |1, 1〉 state residing in the lower hyperfine (F = 1) ground

state (see figure 3.18). These two states are separated by the ground state hy-

perfine splitting of 6.835 GHz, in addition to their relative Zeeman shifts due to

the presence of the magnetic trap, which in this case gives a total splitting of:

fMW = fHF + 3µBB. We evaporate on this ‘microwave’ transition rather than

the more closely-spaced Zeeman transitions in order to avoid cutting directly into

the 39K cloud. The 39K atoms are cooled via their elastic collisions with the cold
87Rb reservoir.
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Figure 3.18: Hyperfine evaporation of 87Rb. (a) 87Rb atoms in the |2, 2〉 state
are transferred to |1, 1〉 using a microwave-frequency sweep. The 5G field offset
at the QUIC trap centre allows us to also selectively remove residual |2, 1〉 atoms
using a second, simultaneous sweep as described in the text. (b) The sweep se-
quence used for hyperfine evaporation includes a 2s preliminary evaporation in the
quadrupole trap, a 6s interval during ramp-up of the QUIC trap and a 56s evap-
oration sweep with a time constant of 14s. (c) The helix antenna used for the
evaporation (modified from [170]).
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The sympathetic cooling sequence proceeds as follows: In order to transfer as

many 39K atoms into the QUIC trap as possible, we perform a short sympathetic

cooling stage while still in the pure quadrupole trap, ramping the microwave

frequency from 6909.68MHz to 6879.68MHZ linearly in 2s. The knife is then lifted

to a high frequency during the 6s loading of the QUIC trap. Once our 87Rb-39K

mixture has been loaded into the QUIC trap, we employ a 56s exponential sweep

of the frequency from 6873.68 to 6847.24MHz with a 14s time constant. To obtain

the starting frequency, we first find the ‘bottom of the trap’ i.e., the frequency

at which all atoms are just evaporated. Equation 2.36 then allows us to pick

an initial temperature from which to commence evaporation. The long sweep is

required in order to allow for thermalization between 39K and 87Rb atoms due to

the small value of aK-Rb, whereas in 87Rb-only experiments we observe an almost

identical efficiency with a shorter evaporation time of 32s. In addition, during

the evaporation time, we continually sweep a separate microwave source between

6838 and 6844MHz. The 5G field offset at the minimum of our QUIC trap allows

this sweep to remove any |2, 1〉 87Rb atoms without affecting the atoms in the

|2, 2〉 state.

Hardware

The microwave radiation is delivered to the atoms from an antenna driven by a

function generator1 via an amplifier2. In order to achieve efficient evaporation,

it is desirable for as much of the power delivered to the antenna to be radiated

in order to maximize the magnetic field strength at the location of the atoms.

Our antenna consists of a ten-turn helix with an overall length of 10cm, wound

from 1mm copper wire around a teflon tube of wall thickness 0.4mm and inner

diameter 14mm. The helix is connected to a 30mm-diameter copper ground plate

fitted with an SMA connector and is impedance matched to the voltage source by

deforming the first 1/4 turn closest to the ground plate. The output power of our

25dB-gain amplifier is limited to 38dBm (∼6.3W), with the added directivity3

of the antenna, Dpeak ≈ 4.5 (DdBi = 10 log[D] ≈ 6.5), providing sufficient power

at the atoms to perform efficient state transfer. Figure 3.18b shows the helix

antenna and figure 3.18c shows the antenna’s directivity measured for both linear

polarization components. See Igor Gotlibovych’s project report for more details

1 Agilent, N5183A MXG
2 Microwave Amplifiers Ltd., AM53-6.7-7-25-38
3 Antenna directivity is defined as the ratio of the power density radiated in the direction

of strongest emission to that of an ideal isotropic radiator radiating the same total power.
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on the setup and characterization of the microwave system [170]. The radiation

used for removal of |2, 1〉 87Rb atoms during the evaporation sweep is derived

from a sweep generator1 and is added to the main evaporation frequency on a

power combiner2 before being sent to the amplifier and helix antenna.

3.9.1 Sympathetic cooling results

Figure 3.19 shows absorption images3 of both 39K and 87Rb taken at various

points during the sympathetic cooling sequence.

39K! 87Rb!

T ≈ 200µK!
N ≈ 25 x 106!

T ≈ 5µK!
N ≈ 14 x 106!

T ≈ 120µK!
N ≈ 400 x 106!

T ≈ 4µK!
N ≈ 60 x 106!

Figure 3.19: Sequence of images taken at the start, middle and end of a typical
sympathetic cooling sequence. While 87Rb cools from 120 to 4µK, losing roughly
a factor of seven in atom number, 39K is cooled from 200 to 5µK with less than a
factor of two drop in number.

Figure 3.20 shows the evolution of the phase-space density of both the 87Rb and

the 39K components against their respective numbers during the sympathetic

cooling stage in the QUIC trap.

We can characterize the efficiency of our sympathetic cooling using the evapo-

ration parameter, γ, defined in the discussion of evaporative cooling is section

2.4. For 87Rb alone, we observe very efficient cooling with γ = 3.6. For 39K we

observe an extremely steep rise in phase-space density with only small atom loss,

indicating the effectiveness of our sympathetic cooling. The temperature of the
39K cloud is reduced from 200 to 5 µK while the atom number is reduced by less

1 Agilent/HP, 83622A synthesized sweeper
2 Mini-Circuits, ZX10-2-71-S+
3 See section 3.14.
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Figure 3.20: Evolution of phase-space density with atom number during sympa-
thetic cooling. The solid black line shows 39K cooling with less than a factor of two
drop in number. The dotted black line shows the data for 87Rb in the presence of
39K and the dashed black line shows 87Rb alone. The dashed red line shows the
result of a fit to the sympathetic cooling model of [134], described in section 2.4.

than a factor of two, from ∼ 25 × 106 to ∼ 14 × 106. The trap lifetime would

account for a roughly 20% reduction in NK over the evaporation period, so the

observed loss shows evidence for some inelastic processes. By analogy with con-

ventional evaporative cooling we can express the efficiency of this process with

an effective γsymp ≈ 20.

Using the expression for the peak phase-space density of a non-degenerate cloud

of N atoms, at temperature T, in a 3D harmonic potential of mean frequency ω̄

ρ0 = n0λ
3
dB = N

(
~ω
kBT

)3

(3.8)

in conjunction with equation 2.451 allows us to model the evolution of the 87Rb

phase-space density with (decreasing) atom number and compare it to our exper-

imental results. A fit to the data is shown in figure 3.20. This fit has assumed

a constant 39K number, taken to be the mean of the initial and final values, and

yields the result α = 1.47±0.03 for the evaporation parameter α = (η + κ) /3−1

defined in this model. Assuming a constant value of η = 7 throughout the evap-

oration, results in the prediction κ = 0.41. Despite its simplicity, the model of

1 Reminder: TRb = Tmin(NRb/NK + 1)α with Tmin = T init
Rb (NK/N

init
Rb )α
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[134] is seen to provide a good fit to the data. Figure 3.21 shows the temperature

of the 39K cloud as a function of the number of 39K atoms remaining at the end

of the evaporative cooling stage. The temperature can be seen to approach the

final temperature reached by 87Rb in the absence of 39K.
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Figure 3.21: 39K temperature as a function of the number of 39K atoms remaining
at the end of the sympathetic cooling.

3.10 Crossed dipole trap (CDT)

The final cooling stage is performed in a crossed optical dipole trap (CDT) after

transfer of the atoms from the QUIC trap. The light for our crossed optical dipole

trap is generated by a 10W, single-mode, linearly polarized, CW, Ytterbium fibre

laser1, with a wavelength of λ = 1070nm and a linewidth specified at δλ ≈ 1.5nm

The laser is fitted with a collimator to produce a beam with a 1/e2 diameter of

5mm and a 1/e2 divergence of 0.3mrad. The red-detuning of the beam from the

D2 transition for both species produces an attractive potential, with atoms drawn

to the intensity maximum at the beam centre.

Our trap is formed by a single beam arranged in a ‘bow-tie’ configuration as

shown in figure 3.22.

This configuration, as opposed to two independently-controlled beams, was cho-

sen in order to maximise the amount of trapping power available. The beam is

initially telescoped down to a 1mm diameter by a lens pair in order to enable

it to pass through a 110MHz AOM2, selected primarily for its large active aper-

ture. The beam then has its polarization cleaned up by a polarizing beamsplitter

1 IPG Photonics, YLM-10-LP-SC
2 Crystal Technology Inc., 3110-197
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Figure 3.22: CDT optics layout. The beam diameter is initially reduced by a 1:5
telescope before passing through an AOM and PBS cube. It is then expanded and
focussed at the atoms by another lens pair. After passing through the cell, the
beam is collimated, refocussed and sent back to cross itself orthogonally, before
being sent to a beam dump and monitor photodiode. Distances are not to scale.

cube, before being expanded and refocused at the centre of the science cell by

a concave-convex lens pair (f = -50/+100mm) mounted in a rigid cage system.

This lens configuration allows simple adjustment of the beam waist between 100

and 160µm. After passing horizontally through the science cell, the beam is col-

limated, reflected and focused back to cross itself orthogonally with the same

waist. A maximum power of 7.5W per beam reaches the atoms, although we

normally limit this to 7W to ensure power stability.

The beam has a Gaussian intensity profile and so the combined potential taking

into account both beams as well as gravity, and neglecting the Rayleigh range,

which for our 140µm waist is zR =
πω2

0

λ
≈ 6cm, can be written as

Utot (x, y, z) =

Beam along ‘y’︷ ︸︸ ︷
−U0e

−2

(
x2+z2

w2
0

) Beam along ‘x’︷ ︸︸ ︷
−U0e

−2

(
y2+z2

w2
0

)
+

gravity︷︸︸︷
mgz

≈ −U0

(
1− 2

(
x2 + z2

w2
0

))
− U0

(
1− 2

(
y2 + z2

w2
0

))
+mgz

= −2U0

(
1− (x2 + y2 + 2z2)/w2

0

)
(3.9)
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where U0 is the peak potential created by a single beam and w0 is the beam waist.

The potential can thus be approximated, for small displacements (x, y � ω0), as

harmonic, with the trapping frequency along the z-direction larger by a factor of√
2 than those along the x and y directions. Further discussion of the trap char-

acteristics, including trap-depth, frequency, gravitational sag and anharmonicity

simulations, can be found in the doctoral thesis of Robert Campbell.

Intensity stabilization

The optical trapping potential can be stabilized, and its depth varied over two

orders of magnitude, by means of a servo loop consisting of the AOM through

which the beam is initially passed, a photodiode1 and a proportional-integral-

derivative (PID) controller, whose output is fed back to the AOM in order to

stabilize the beam intensity in proportion to a reference voltage provided by our

computer-controlled analog voltage sources (see section 3.16). The photodiode is

illuminated by a small (but constant) fraction of the total CDT power, picked off

the main beam by a glass microscope slide after both its traversals of the science

cell.

3.10.1 Transfer into the CDT

In preparation for transfer of the atoms into the CDT, the QUIC trap is translated

to the centre of the science cell as follows: The quadrupole gradient is reduced

linearly from 128G/cm to 80G/cm over 1s, while the current in the Ioffe coil is

simultaneously ramped up from 19.7A to 28A. During the second half of this

ramp, the anti-bias field is linearly increased from 5G up to 22.8G.

In order to load the CDT from the QUIC trap, the power in the CDT beam is

linearly ramped up to 6.8W in 1s, followed by a 0.5s settling time. Over the

following second, the quadrupole gradient is reduced to 48G/cm, the anti-bias

field to 3.72G and the Ioffe coil current to 15.6A. The quadrupole and Ioffe coils

are then abruptly switched off, leaving the atoms confined solely by the CDT,

whose depth at this point is ∼30µK for 39K and ∼35µK for 87Rb. The anti-bias

field remains on in preparation for the removal of the 87Rb from the trap (see

below).

1 Thorlabs, DET36A/M
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Figure 3.23 shows the number of 39K atoms transferred into the CDT as a

function of their final number in the QUIC trap, together with the temperatures

before and after the transfer. For samples with temperatures of up to 6µK in

the QUIC trap, equivalent to an evaporation parameter of η ∼ 5, we observe

a constant transfer efficiency of ∼60%. This constant factor is due to the

imperfect spatial overlap between the two trapping potentials and is limited by

the geometries of the two traps, despite the large (140µm) CDT waist being

beneficial. For the QUIC trap frequencies specified above for 39K, the radial and

axial diameters of the cloud at 5µK are 2RT ≈ 160 and 500µm, respectively,

using RT =
√
kBT/mω2.
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Figure 3.23: Transfer efficiency from QUIC to CDT. Plot shows number of 39K
atoms initially in the CDT as a function of the final number in the QUIC trap,
together with the temperatures before (in brackets) and after the transfer.

For comparison, the loading efficiency was measured for a 100-µm beam waist and

was found to be limited to ∼20%, saturating at around a third of the available

CDT power. We cannot currently increase our beam waist without decreasing

the trap depth since we are operating at our maximum available laser power. We

typically load 8 × 106 39K atoms into the CDT at a temperature of 6µK, from

the 13× 106 atoms remaining in the QUIC trap.
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3.10.2 Optical evaporation strategy

With our atoms in the CDT, we are faced with the decision of how to proceed with

cooling of the 39K atoms. Since the potential is now state-independent, reduction

of the trap depth is accomplished by reducing the CDT beam intensity. In order

for sympathetic cooling to be effective in the CDT, the total trap depth for 87Rb

has to be lower than that for 39K so that the former can be removed without loss of

the latter. The relative trap depths for 87Rb and 39K depend on the competition

between two factors: (1) the strength of the electric dipole potential for the two

species and (2) the deformation of the potential by gravity. Both effects are larger

for 87Rb, the former due to the smaller detuning of the CDT beam from the 87Rb

D line and the latter because of its higher mass. As a result, at our initial laser

intensities the effect of gravity is negligible and atoms are preferentially lost along

the CDT beams such that the trap depth is higher for Rb. Only at sufficiently

low intensities does gravity distort the trapping potential enough for the Rb

trap depth to fall below that of K, making sympathetic cooling viable. See the

corresponding chapter of Robert Campbell’s thesis for a more detailed discussion

of the optical trap depth. We therefore choose to switch to direct evaporation of
39K and immediately after transfer of both species into the CDT we remove any

remaining 87Rb atoms from the trap with a 2ms pulse of imaging light in order to

prevent any spin-exchange collisions during the subsequent state transfer of 39K

into the |1, 1〉 state, as described below.

3.10.3 State transfer

In order to prevent collapse of the 39K cloud at low temperatures due to its at-

tractive interactions [68, 69, 171], as well as to increase the evaporative cooling

efficiency, we tune the scattering length to a positive and large value by means

of a magnetic Feshbach resonance1. The Feshbach resonance on which our ex-

periments rely occurs in |1, 1〉 + |1, 1〉 collisions of 39K and so in preparation for

the application of the uniform Feshbach magnetic field, we transfer the entire

population from the |2, 2〉 to the |1, 1〉 state. The transfer is accomplished by a

35ms Landau-Zener sweep of the magnetic bias field from 3.72G to 3.14G in the

presence of 469.3MHz radiation, after all 87Rb has been removed from the trap.

The 469MHz signal is generated by the same function generator used to pro-

1 See section 2.6



3.10 Crossed dipole trap (CDT) 99

duce our 6.8GHz 87Rb-evaporation radiation; its 5dBm output is controlled by a

voltage-controlled RF switch1 and amplified by a broadband RF amplifier2 to a

power of approximately 4W (36dBm) before being sent to a single-loop antenna

of 36mm diameter, mounted horizontally less than 20mm from the location of the

atoms. The amount of radiated power, measured by means of a small pick-up coil

was found to be hugely increased by the insertion of a tuneable 1-3pF capacitor3

in series with the antenna, whose primary role is the cancellation of the dominant

inductive reactance of the antenna, Xloop = ωLloop, with the inductance, Lloop,

given by [172, 173]

Lloop = µ0a

[
ln

(
8a

b

)
− 2

]
(3.10)

where a = 18mm and b = 0.5mm are the loop and wire radii, respectively4.

The use of such ‘tuning capacitors’ for impedance matching of loop antennas is

well known [172, 173]. The resonating capacitance is found by equating the two

reactances: (ωC)−1 = ωLloop, which for our parameters gives C = 1.4pF and does

not account for any ohmic losses due mainly to the skin effect in the wire. The

circumference of our antenna is C≈11.3cm, i.e. C ≈ λ/6 at 469MHz, classifying

it as a small-to-intermediate size loop.

Direct optical evaporation of 39K proceeds, after the state transfer and ramp-up

of the Feshbach field, via an exponential sweep of the beam intensity over 6s from

its initial value of 6.7W per beam down to the desired final depth, which depends

on the desired final temperature or condensed fraction.

3.10.4 Trap frequencies

In order to measure the CDT trapping frequencies, we excite an oscillation of

the trapped cloud and extract its centre-of-mass position as a function of time.

We prepare a small, fully condensed cloud by performing an optical evaporation

sweep to an almost negligible trap depth (a few nK) and then abruptly ramping

up the trapping beam power to a final depth of 2.6µK in a two-piece linear ramp

of total duration 110ms, as shown in figure 3.24a.

The centre-of-mass vertical coordinate of each image was found from a fit to a

1 Mini-Circuits, ZYSWA-2-50DR
2 Delta RF Technology, LA2-1-525-30
3 Vishay BCF280905215, 1-3.5pF, 300VDC voltage rating, can withstand 600V for 1 minute
4 Expression 3.10 for the inductance is valid for b � a i.e. when the wire radius is much

smaller than the loop radius.
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Figure 3.24: Measuring the CDT trapping frequency. (a) following optical evap-
oration, the CDT intensity profile is ramped up over 110ms and (b) the centre-of-
mass position of the cloud is measured after a variable oscillation time and fit to a
sine function to extract the trap frequency.

pure Thomas-Fermi profile. Figure 3.24b shows the oscillation in the vertical

direction, together with a best-fit sinusoid which yields a frequency along the

z-axis (vertical in lab frame) of 91.8±1.0Hz. A numerical simulation of the CDT

trapping potential, including the effects of gravity, yields a predicted frequency

of ωz = 93.9Hz for this trap depth assuming no misalignment between the CDT

beams, in good agreement with the data.

3.11 Feshbach field and Feshbach resonance

With the 39K atoms transferred to the |1, 1〉 state, we can now access the Fes-

hbach resonance at 402.5G in order to tune the s-wave scattering length to the

desired value. As discussed in chapter 2, this is accomplished by application

of a homogeneous magnetic field and this section describes the coils used, their

mounting about the science cell, their field calibration and our measurements

used for locating the position of the resonance and the zero-crossing.

3.11.1 Feshbach coils

The Feshbach field is generated by a Helmholtz coil pair, with each coil consisting

of 14 turns (2×7, axial×radial) wound from 4mm outer-diameter (OD) copper

tubing (ID: 2.8mm), coated in extra-thin heat-shrink material and having an

inner diameter of 70mm. The coils are mounted 37mm apart at their closest

point and produce a field of approximately 540G at the point midway between
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them when operated at their maximal current of 200A. These parameters were

chosen in order to provide access to the 402.5G-resonance while keeping the size

of the coils sufficiently small so as to be able to place them in close proximity

to atoms, within the space between the science cell and the quadrupole coils.

The field curvature at the location of the atoms is numerically estimated to be

7× 10−4GA−1cm−2.

3.11.2 Science cell coil mount

The Feshbach coil pair, as well as 5 auxiliary Helmholtz coil pairs (two axial,

two transverse and one vertical, with respect to the science cell’s long axis1, the

RF-evaporation antenna and the 462MHz hyperfine state-transfer antenna are

mounted in their respective positions around the science cell by a single mounting

structure, designed to hold all the above components within the restricted space

between the science cell and the moving quadrupole coils.

Figure 3.25: The mount constructed for supporting the Feshbach, compensation,
anti-bias and TOP trap coils. An additional mount (not shown) is attached so as
to fit within the upper coil’s inner diameter and supports the meniscus constituting
the first component of the multi-element objective used for vertical imaging (see
section 3.14) at a distance of approximately 15mm from the science cell’s outer
wall.

The auxiliary coils are used for providing the uniform compensation and bias

fields required during different stages of the experimental sequence such as QUIC

1 See figure 3.6.
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trap loading, state transfer and imaging. The mount is constructed from Poly-

oxymethylene1, a thermoplastic material possessing high stiffness, dimensional

stability and machinability, often used as a replacement for metals in mechanical

parts. This was used in order to avoid any eddy currents arising from the rapid

switching of the Feshbach, anti-bias and Ioffe coils during the experimental se-

quence. Figure 3.25 shows the coil mount before and after its insertion into the

apparatus, and the specifications of all the coils mounted in the vicinity of the

cell are summarized in table 3.4.

Name
ID

Turns
Wire � Spacing Field

Role
[mm] [mm] [mm] [G/A]

Feshbach 70 2×7 4/2.8 37 2.6 Feshbach
resonance

Compensation
62×152 8 0.71 56 1.14 Horizontal

(transverse field) imaging guide

Compensation
74×149 8 0.71 56 1.14 —

(axial field)

Compensation
190 3×7 1 70 2.28 Vertical

(vertical field) imaging guide

TOP
62×152 10 1 56 1.46 QUIC anti-bias/

(transverse field) double-shuttering

TOP
74×149 10 1 56 1.43 —

(axial field)

Ioffe 10 3×6 1 NA - QUIC trap

RF
36 1 1 NA - Evaporative

antenna cooling

462MHz
36 1 1 NA - 39K state

antenna transfer

Microwave
15 10 (helix) 1 NA - 87Rb

antenna evaporation

Table 3.4: Summary of the various coils mounted in the vicinity of the science cell
and their properties.

1 Also known as acetal, or by one of its trade names, Delrin.
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3.11.3 Feshbach field calibration

We perform RF spectroscopy on the |2, 2〉 → |2, 1〉 transition of 87Rb in order to

calibrate the field produced by the Feshbach coils. This is carried out by applying

RF radiation to a cold, |2, 2〉 87Rb cloud with a fixed frequency corresponding

to the splitting between the |2, 2〉 and |2, 1〉 states in the presence of a 402.5G

field. The splitting is found from the Breit-Rabi formula of equation 2.29 to

be ν402.5G = 249.444MHz, and this radiation is applied using the same function

generator and loop antenna used for 39K state transfer (section 3.10.3). The

voltage controlling the current in the Feshbach coils is then swept linearly in

200ms over sequential overlapping intervals with a width of 0.004V and centred

at increments of 0.002V, until we observe transfer of the entire cloud to the |2, 1〉
state (see figure 3.26).

a)! b)! c)! d)! e)!

Figure 3.26: A typical sequence of images used for calibration of the Feshbach
field. The atoms are irradiated with a frequency corresponding to the energy
splitting at 402.5G and the control voltage is swept over a series of overlapping
intervals: (a) 3.800V → 3.804V, (b) 3.802V → 3.806V, (c) 3.804V → 3.808V, (d)
3.806V → 3.810V, (e) 3.808V → 3.812V. Transfer of atoms from the |2, 2〉 state
(lower cloud) to the |2, 1〉 state (upper cloud) is monitored. In this case, transfer
occurs somewhere in the overlap between intervals (c) and (d) i.e. at a voltage of
3.807V, which therefore corresponds to a field of 402.5G.

In order to distinguish between the two states during imaging, a Stern-Gerlach

field is applied in order to spatially split the two components during time of

flight. The Stern-Gerlach field is applied by jumping the quadrupole coil current

to 46A over 1-2ms in order to generate a gradient of ≈20G during the 14ms

time of flight, and results in a larger deflection for the |2, 2〉 component. Both

components are simultaneously imaged by our σ+-polarized |F = 2〉 → |F ′ = 3〉
light, with the Feshbach field being switched off 5ms prior to the imaging pulse. In

the current setup, we have found a control voltage value of 3.807V to correspond

to a field of 402.5G, and we use this procedure to periodically ensure that this

calibration has not drifted. Below we describe the experiments carried out in

order to characterize the resonance, namely location of the resonance centre and

the zero-crossing field.
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3.11.4 Detecting the resonance

The presence of Feshbach resonances is most commonly detected by monitoring

atom losses in the cloud as the scattering length is tuned across the resonance.

In the vicinity of a Feshbach resonance, the scattering length rises sharply, as

described by equation 2.56, leading to an increase in the rate of inelastic three-

body collisions. The three-body coefficient, K3, for these collisions, defined by

ṅ = −K3n
3, is expected to rise sharply with the s-wave scattering length and for

low-energy collisions at large scattering length, has been predicted to scale with

its fourth power, K3 ∝ ~a4/m [174]. Experimental results consistent with this

prediction have been reported [175]. The divergence of a on resonance therefore

causes a correspondingly sharp rise in the inelastic collision rate. These three-

body collisions result in the formation of a diatomic molecule, with the binding

energy released in the process being removed by the third colliding atom. Since

the final energy of this atom usually exceeds the trap depth, this process results in

atom loss from the trap. Furthermore, since this three-body recombination takes

place preferentially in the denser, cooler region of the cloud, the ejected atom

removes an energy below the mean thermal energy and hence causes heating of

the sample. To see this more quantitatively, we can consider the mean potential

energy associated with a thermal atom at temperature, T, trapped in a harmonic

potential and participating in such a three-body process

〈U〉 =

∫
Un3dV∫
n3dV

=
1

2
kBT (3.11)

with U = mω2r2/2 and n = n0 exp [−mω2r2/2kbT ]. This is less than the 3
2
kBT

mean potential energy in the gas and hence each atom lost due to three-body

recombination releases an energy of kBT into the system.

Observation of these sharp loss and heating features is therefore a useful signature

of the resonance and can be used to locate its centre. We perform this Feshbach

spectroscopy on our trapped 39K atoms using the following procedure:

1. The atoms are held in the |1, 1〉 state in the optical trap at a temperature

of around 1.2µK.

2. The Feshbach field is taken to a value of approximately 403.9G and held at

this value for 10ms. This is done in order to try and eliminate the common

asymmetry in the loss profile that results from the field having to pass
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through the resonance centre on its way to values that lie beyond it, and

hence suffering excess losses compared to field values on the same side of

the resonance as the initial field value. We therefore choose an initial field

value as close as possible to the resonance centre.

3. The field is then swept to a final value in 20ms and held at this value for

100ms. This hold time is chosen so as to allow for a significant maximal

drop in atom number at the resonance, while not losing enough atoms so

as to blur the resonance peak as a result of reducing the density enough for

the losses to ‘saturate’.

4. The cloud is released from the trap and absorption imaged after an 8ms

time-of-flight. Upon release, the field value is taken close to the zero-crossing

at 350G in order to prevent any additional losses during TOF.

5. The atom number and temperature of the cloud are extracted and averaged

over 5 repetitions of the above sequence.

The results of this sequence are shown in figure 3.27. The atom number is seen

to drop sharply by a factor of two while the temperature concurrently rises by

approximately 25% at a field value very near 402.5G. The agreement of this

value with the results reported by other groups [60, 176] give us confidence in

our field calibration and experimental procedure. Note that in figure 3.27 we

also observe additional losses and heating on the attractive (high-field) side of

the resonance centre, compared to those on the repulsive side. This is likely

due to the asymmetry in the three-body loss coefficient K3 on either side of the

resonance [176, 177], with the a < 0 value of K3 being around 100 times larger

than its a > 0 counterpart just 0.3G from the resonance centre1.

3.11.5 Detecting the zero-crossing

Two procedures have been used by various groups in attempting to detect the

location of the zero-crossing for a given resonance.

1. The vanishing of the scattering cross-section causes a drop in the efficiency

of evaporative cooling due to the divergence of the rethermalization time

(see section 2.4). This can be detected as a peak in the final tempera-

ture achieved during the evaporative cooling stage and, in the case of free,

1 see figure 1c of [176]



106 Design, assembly and performance of our 39K-87Rb apparatus

0.32

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

A
to

m
 n

um
be

r (
10

6 )

411398 399 400 401 402 403 404 405 406 407 408 409 410

1.6

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

a)!

b)!

Figure 3.27: Detection of the resonance centre. The location of the resonance
manifests itself as a sharp drop in the atom number and a corresponding rise in
the temperature due to the sharp rise in the rate of inelastic three-body collisions.
The resonance centre was found at 402.5G, in excellent agreement with previous
results [60, 176].

unforced evaporation, as a peak in the number of atoms remaining in the

trap [178, 179]. Similarly, in heteronuclear systems the zero-crossing of

inter-species resonances is found by monitoring the efficiency of sympa-

thetic cooling as reflected in the final temperature and atom number of

the target gas, which both take on their peak values at the zero-crossing

[61, 180, 181].

2. Alternatively, the zero-crossing can be located by observation of the onset of

collapse of the condensate. This manifests itself in an abrupt drop in atom

number when the condensate becomes unstable. This instability occurs at

a negative value of the scattering length when the atom number increases



3.11 Feshbach field and Feshbach resonance 107

sufficiently such that the self-attractive forces due to the negative scattering

length outweigh the repulsive force due to the zero-point energy of the atoms

in the harmonic trap [68, 69, 182, 171].

We have searched for the zero-crossing using the latter method. A 39K condensate

is held in the CDT for three seconds, during the last 100ms of which the Feshbach

field is ramped from an initial value of around 390G to a value in the predicted

vicinity of the zero-crossing at 350G in 50ms and held at this value for a further

50ms. The cloud is then imaged after a 15ms TOF. Figure 3.28 shows a sequence

of images taken as the Feshbach field approaches and then passes the zero-crossing

from above. After an initial, coarser, search the range of final values was narrowed

and the onset for the fragmentation of the condensate was found to appear at

a field of between 350.2G and 349.7G. We therefore place the zero-crossing at

a field of 350.0 ± 0.2G, giving a resonance width of ∆ = 52.5G, in very good

agreement with theoretical predictions and other experimental results [60, 36].

353.1G! 348.9G!

351.0G! 350.6G! 350.2G! 349.7G! 349.3G!

collapse!

Figure 3.28: BECs during coarse- and fine-tuning of the field near the zero-
crossing

A more accurate estimate could perhaps be obtained by utilizing the first of the

two techniques mentioned above and measuring the final temperature of the 39K

cloud after the direct evaporative cooling stage in the CDT.
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3.12 Onset of BEC in 39K

Evaporative cooling in the CDT is used to take the 39K sample across the BEC

critical point. Figure 3.29 shows a sequence of images taken at various points

during evaporative cooling in the CDT, along with their density profile fits as

described in section 3.15 below.
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Figure 3.29: Optical evaporation of 39K across Tc. The leftmost image is taken
above Tc and in the following images the condensed fractions are 0, ≈20%, ≈40%
and ≈80%, respectively, with the condensate number growing from approximately
1.5 × 105 to 4.2 × 105 as the temperature decreases from 170nK to 50nK. The
bottom row shows the theoretical fits to the data as described in section 3.15.

3.13 Sequence summary

Figure 3.30 shows an overview of a typical experimental sequence for producing

condensed clouds of 39K in the CDT, including a plot of the evolution of both

the 87Rb and 39Rb peak number densities as a function of their temperature

throughout the sequence.

3.14 Imaging setup and procedure

This section describes the optical setups we use in order to capture absorption

images, both horizontally and vertically in the lab frame, following release of

the cloud from the magnetic or optical trapping potential. We also describe our

double-shuttering imaging procedure and the fitting procedure used to extract

physical information from the resulting absorption images.
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3.! Optical pumping! 200μs! --------! --------!

4.! Magnetic capture! 50ms! 1.3x108 / 3.2x109! --------!

5.! Transport! 2.7s! --------! --------!

6.! Transfer to QUIC! 6s! 2.5x107 / 4x108! 200μK / 100μK!

7.! Sympathetic cooling by 87Rb! 56s! 1.4x107 / 6x107! 5μK / 4μK!

8.! Transfer to CDT! 2s! 8x106 / 3x107! 6μK / 5μK!

9.! Removal of 87Rb! 2ms! -------! --------!

10.! 39K state transfer! 35ms! -------! --------!

11.! Feshbach field ramp-up! 5ms! -------! --------!

12.! Optical evaporation of 39K! 6s! 4x105 (39K)! ~400nK!

13.! TOF (+Imaging)! 20ms (+180μs)! 4x105 (39K)! ~400nK!

Figure 3.30: Summary of the experimental sequence for cooling 39K to quantum
degeneracy. The table shows the duration of each step together with the associated
atom numbers and temperatures and the plot shows the evolution of both species’
peak number densities against their temperatures. Labels on the plot correspond
to rows in the table and lines of constant phase-space density are indicated.
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3.14.1 Horizontal imaging system

Our horizontal imaging system is an adaptation of the compound-lens design

proposed by Alt [183]. The motivation behind this design is to construct a high-

numerical aperture objective using cheap, off-the-shelf optical components by

using the aberrations present in each component to cancel each other, as well as

the aberrations introduced by the science cell wall, and hence achieve diffraction-

limited performance with a working distance large enough so as not to obstruct

the paths of the CDT beams. The original constraints presented in [183] were

similar to those of our system in the horizontal direction and the only change

was the use of a standard meniscus as the first element instead of the custom

meniscus used by Alt. The recalculation of the lens spacings and the assembly

and testing of the objective were carried out by Alexandre Dareau using the

OSLO optimization package, and the detailed results can be found in his project

report [184].

In brief, the surface of the first meniscus in the objective is located ≈27mm

from the science cell wall along the optical axis, and the CCD surface is located

≈111mm from the final surface of the focussing achromatic doublet. These spac-

ings represent only initial guesses. The objective is mounted on a translation

stage and the distances are optimized empirically so as to focus on the atomic

cloud since it may not be situated precisely in the centre of the cell.

Horizontal-imaging magnification

The magnification of the horizontal imaging system is determined by measuring

the centre-of-mass (CoM) position of a dropped cloud at various times after its

release from the trapping potential, and fitting its trajectory to that expected for

free fall under gravity, h = 1
2
Mgt2. Our knowledge of the camera’s pixel size and

the fall time allows us to obtain the effective pixel size, i.e. the magnification. For

the horizontal objective, we obtain a magnification of Mhoriz = 2.8

3.14.2 Vertical Imaging system

The vertical imaging system was also designed by Alexandre Dareau and

full details are available in his report. The main additional constraint on

this system was the need to leave room for the translating quadrupole coils
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Figure 3.31: Overview of the horizontal and vertical imaging systems around the
science cell.

Label Description Part number

Horizontal objective

a 1” meniscus, f=100mm LE1234-B

a → b 2.53mm

b 1” plano-convex lens, f=75mm LA1608-B

b → c 2.80mm

c 1” bi-convex lens, f=100mm LB1676-B

c → d 12.64mm

d 1” plano-concave lens, f=-75mm LC1582-B

d → e arb.

e 1” achromatic doublet, f=100mm AC254-100-B

e → CCD ≈110mm

Table 3.5: Descriptions, separations and part numbers for the components of our
horizontal imaging system. Labels correspond to those shown in figure 3.31 and
unless otherwise stated, part numbers are from Thorlabs. See Alexandre Dareau’s
project report for further details.
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as shown in figure 3.31, with the imaging beam passing through the coil

centre. In order to cover as large a solid angle as possible, 2” optics were

used for this system, and a custom meniscus was mounted in close proxim-

ity to the science cell in order to further increase the effective numerical aperture.

Label Description Part number

Vertical objective

f
25mm Custom meniscus,

Lens-Optics GmbH.
R1 = 26.06mm, R2 = −78.16mm

f → g ≈54mm

g 2” plano-convex lens, f=150mm LA1417

g → h 2.53mm

h 2” bi-convex lens, f=100mm LB1630

h → i 2.80mm

i 2” plano-concave lens, f=-75mm LC1315

i → j ≈150mm

j 2” achromatic doublet, f=200mm AC508-200-B

j → CCD ≈200mm

Table 3.6: Descriptions, separations and part numbers for the components of our
vertical imaging system. Labels correspond to those shown in figure 3.31 and unless
otherwise stated, part numbers are from Thorlabs. See Alexandre Dareau’s project
report for further details.

Vertical magnification

We obtain the magnification of the vertical imaging system by simultaneous ver-

tical and horizontal imaging of a cloud released from the CDT after roughly 20ms

time-of-flight. Since in this time, any anisotropy due to the trapping potential

will have decayed away we can assume that the vertical and horizontal sizes of

the cloud are equal. Our knowledge of the horizontal-imaging magnification (see

above) and the pixel size therefore allow us to infer the vertical-imaging magni-

fication. We obtain a magnification in this direction of Mvert = 5.2 when using a

doublet of focal length 200mm as the final element.
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3.14.3 Cameras and double shuttering

The camera model currently used in both the horizontal and vertical imaging

systems1 utilizes a so-called ‘interline’ CCD. The advantage of this type of sen-

sor from our perspective is that it enables two separate images to be captured in

very rapid succession, with inter-frame times as low as 5µs. This double-shuttering

feature, often used in particle image velocimetry (PIV) applications, allows us to

effectively remove the effects of beam inhomogeneity from our final OD profile

since any of the inevitable inhomogeneities in the imaging laser beam will not

have time to fluctuate between the images taken with and without the atomic

cloud - the I and I0 of equation 2.86, respectively - and will hence be efficiently

divided out when extracting the optical density. The primary disadvantage of this

type of sensor is its relatively modest quantum efficiency at the imaging wave-

lengths, approximately 25%, compared to more sophisticated back-illuminated

and electron-multiplying (EMCCD) cameras, in which efficiencies of > 95% are

achievable. The camera is controlled via a custom graphical user interface (GUI)

running within MATLAB, that automatically generates the final OD image(s)

for each experimental run and also allows browsing and basic analysis of images

in real time.

Double-shuttering procedure

Since double-shuttering relies on the use of a masked region of the CCD for

temporary storage of the first exposure while the second exposure is recorded,

the duration of the second exposure must be at least as long as the time required

for the camera to read out the first exposure from behind the mask (≈80ms).

Therefore, since a double-exposure pair with very different exposure times is

used to capture I and I0, an identically exposed pair must be used to capture the

dark background images for each of the two (see equation 2.86). Therefore two

double-exposures are used to record four images, with the third serving as the

dark image for the first and the fourth serving as the dark image for the second.

3.14.4 Imaging procedure

Our 39K imaging sequence proceeds as follows:

1 PCO imaging, pixelfly QE, double shutter, pixel size: 6.45µm, sensor: Sony ICX285AL
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1. The Feshbach field is switched off 5ms prior to the end of time-of-flight.

2. Since our 39K atoms are held in the |1, 1〉 state, while we wish to image on

the cycling |F = 2〉 → |F ′ = 3〉 transition, immediately prior to imaging all

the atoms are pumped back into the |2, 2〉 state by a 100µs pulse of repump

light.

3. The atoms are then illuminated with an 80µs pulse of circularly polarized,

low-intensity light (I/IS ≈ 0.2), resonant with the |F = 2〉 → |F ′ = 3〉
transition, and an image of the intensity in the plane of the atoms is recorded

by the camera1. During the imaging pulse, a quantization axis is defined by

applying a guide field of several Gauss along the propagation direction of

the imaging beam using the transverse compensation coils (see table 3.4).

4. A second imaging pulse is applied 60µs after the end of the first in order to

image the unattenuated beam profile, I0 (x, y). During this 60µs interval,

the vertical compensation field is rapidly pulsed to a few (∼ 10) Gauss in

order to detune the atoms from the imaging light and hence make them

invisible to the imaging beam.

5. Approximately 600ms later, a pair of background dark images is captured,

with the CDT being briefly pulsed beforehand at the correct moment in

order to replicate more precisely the lighting conditions under which the

first two images were taken.

3.14.5 Double-species imaging

We have also successfully used double-shuttering to obtain simultaneous images of

the 87Rb and 39K clouds. Three double-exposures are taken, with the first, third

and fifth images constituting I, I0 and Idark for the first species, respectively, and

the second, fourth and sixth providing the same for the second species.

3.14.6 Cross section calibration

The inferred atom number depends on the value used for the absorption cross-

section, σ, of equation 2.54 . Assuming the ideal theoretical resonant cross-section

for a two-level system with transition wavelength λ, σ = 3λ
2π

, typically underesti-

mates the atom number. This is mainly due to imperfections in the polarization

1 typical camera exposure time: 110µs
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of the imaging beam and is identified in our experiments by comparing the critical

atom number, Nc, in a weakly-interacting gas with the theoretical prediction given

by Hartree-Fock mean-field theory (see chapter 4). In calculating the theoretical

prediction we also take into account the effects of the estimated trap anharmonic-

ity and finite system size [46], which are less than 3% and 1%, respectively. For
87Rb we observed a reduction in the cross-section by a factor of 1.5±0.3. For 39K,

the experimental value of Nc was initially extracted from a series taken at 135a0,

giving a cross-section reduction factor of 1.9±0.3. More careful measurements on

very weakly-interacting clouds as part of our investigation of the interaction-shift

of the critical point yielded a factor of 1.5.

3.15 Image analysis

As discussed above, at the end of a typical experimental run four images are cap-

tured using two double-shutter exposures, and the optical density profile OD(x, y)

is generated using equation 2.86. In order to extract quantitative information

from these optical density profiles, we fit them to theoretical predictions of the

density profile after the appropriate time-of-flight, in which the temperature, the

thermal atom number and the condensed atom number are directly related to the

fitting parameters, as described below. For purely thermal, uncondensed clouds

far from the critical point, the absorption image is fitted with a Gaussian profile

of the form:

ODtherm(x, y) = ODtherm(0)e
− (x−x0)

2

2σ2x
− (y−y0)

2

2σ2y (T � Tc) (3.12)

where x0 and y0 are the coordinates of the distribution peak, σx and σy are the

widths and OD(0) is the peak optical density. For thermal clouds near or below

the critical temperature, the fitting function used is the singly-integrated version

of equation 2.72 for the Bose-enhanced distribution:

ODtherm(x, y) =
ODtherm(0)

g2 (1)
g2(e

− (x−x0)
2

2σ2x
− (y−y0)

2

2σ2y ) (T ≤ Tc) (3.13)

At high temperatures, as well as far from the cloud centre, the dilogarithmic

profile of equation 3.13 approaches the Gaussian distribution of equation 3.12.

Fully-condensed clouds are likewise fitted with the singly-integrated version of
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equation 2.80

ODcond (x, y) = ODcond (0) max

(
1− (x− x0)2

R2
x

− (y − y0)2

R2
y

, 0

)3/2

(3.14)

For partially condensed clouds, a bimodal fit is used to differentiate between

atoms belonging to the condensed and thermal components and the fitting func-

tion is simply the sum of equations 3.13 and 3.14. In addition, the fitting routine

also allows for gradients in the x and y directions, as well as a global offset. The

most general fitting function therefore has the form

OD = A1 · g2(e
− (x−A4)

2

2A2
2 − (y−A5)

2

2A3
2 )︸ ︷︷ ︸

thermal component

+A6 ·max

(
1− (x− A9)2

A7
2
− (y − A10)2

A8
2

, 0

)3/2

︸ ︷︷ ︸
BEC component

+A11 · x+ A12 · y︸ ︷︷ ︸
gradients

+ A13︸︷︷︸
global offset

(3.15)

3.15.1 Triple-pass fitting procedure

Fitting all thirteen of these parameters simultaneously is clearly computationally

expensive and inevitably returns unreliable results. Therefore we make use of

an automated three-pass fitting procedure, designed streamline the process of

extracting all the required parameters while providing much more reliable and

accurate values [185, 186]. Our ‘triple-pass’ fitting sequence is as follows:

1. The first pass performs a bimodal fit with a global offset but no gradients

i.e. A1−A10, A13 of equation 3.15. The (relatively crude) results of this fit

will serve as initial guesses in subsequent fits.

2. The second pass performs a g2-only fit, including a global offset and

gradients, in order to find the thermal component i.e. A1 → A5, A11 → A13

of equation 3.15. In this fit, a region of radius αR
TF (1)
x,y , where α is a user-

chosen factor (typically 1.1) and R
TF (1)
x,y is the BEC radius found in the first

pass, centred on the BEC-centre found in the first pass, is excluded from the

data prior to fitting. This is done in order to prevent the BEC peak from

artificially reducing the width found by the thermal-only fit. The results of

this fit are used to determine the thermal atom number.
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3. The third pass performs a TF-only fit i.e. A1−A5 of equation 3.15. This is

done by performing a full bimodal fit, including gradients and global offset,

but holding all the g2, gradient and offset parameters at the values obtained

for them in the second pass and allowing only the five TF parameters to

vary. The results of this fit are used to determine the condensate number.

4. Finally, a number of ‘excluded-region’ g2-only fits are performed, exclud-

ing from the data regions with user-selected radii, typically chosen to be

multiples (e.g. 0.8, 0.9, 1, 1.1 and 1) of the thermal radius, centred on the

BEC centre found in the third pass. The results of these fits are used to

determine the temperature of the cloud and its error.

3.15.2 Number and temperature extraction

The temperature along the i-th direction (i = x/y) is extracted from the mea-

sured width of the cloud in pixels, σi, after t-ms time-of-flight, according to [145]

Ti =
m(σi · apix)2

kB
· ω2

i

106 + ω2
i t

2
≈ m(σi · apix)2

kBt2
(3.16)

where apix is the effective pixel size found from the imaging magnification, ωi is

the angular trapping frequency in the i direction, m is the atom mass, kB is the

Boltzmann constant and the temperature is given in µK. The factor of 106 in the

denominator is introduced since t is taken in ms. The second approximation is

valid for long times-of-flight, when t is much larger than the in-trap oscillation

period.

The thermal atom number, in millions, is given by

Ntherm = 1.202

(
2π

σ

)
· A1 · σx · σy · a2

pix × 10−18 (3.17)

where σ is the absorption cross-section and A1 is the amplitude (i.e. A1 of equa-

tion 3.15). The condensed atom number, also in millions, is obtained using

Ncond =
2π

5σ
· A6 ·Rx ·Ry · a2

pix × 10−18 (3.18)

where A6 is the amplitude (i.e. A6 of equation 3.15) and Rx/y are the Thomas-

Fermi widths in pixels (i.e. A7/8 of equation 3.15).
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3.15.3 AnalysisGUI

A user-friendly application and graphical user interface GUI written in MATLAB

was written for performing the fitting routines. The GUI is used for preview of

images in order to enable scrutinization and elimination from batch fits, con-

figuration of the desired fitting routine, display of the fit results superposed on

the image data, tabulated display of the fit results, numerical assessment of the

fit quality, extraction of physical parameters and export of data for later use.

The GUI also permits the selection of a smaller region of the image (region-of-

interest) for fitting in order to reduce computational cost, as well as allowing for

the optional input of initial guesses for the various fitting iterations, the input of

trapping frequencies and TOFs for number and temperature extraction and the

input of the desired radii to be used in the excluded-region fits described above.

Figure 3.32 shows a selection of screenshots from the application.

Figure 3.32: Analysis GUI screenshots showing the windows used for (a) image
preview, (b) visual image analysis and statistics and (c) image fitting.
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3.16 Timing control

3.16.1 Background

In order to control the power supplies, AOMs, shutters, function generators,

translation stage and other components of our experiment, analog and digital

control voltages as well as serial communications are required. Furthermore,

experiments of the type reported in this thesis, with certain stages requiring high

temporal resolution, on the order of tens of µs and with overall durations on

the order of a minute, would not be feasible without the sophisticated electronic

devices that have become commercially available in the last few decades. This

section briefly reviews the hardware and software components of our experimental

control system.

3.16.2 I/O devices

Digital and analog signals for our experiments are generated by a series of PXI-

based input/output (I/O) devices. These cards are mounted in a PXI chassis1

communicating in real time with a PC2 running the control software. We cur-

rently have 64 digital channels3 and 16 analog channels4 available, with extra

channels easily added by purchasing addition output cards. In addition to the

digital and analog channels, communication with instruments via RS-232 and

GPIB is enabled via a 4-channel RS-232 PCI card5 installed in the control PC and

a USB-based GPIB controller6. RS-232 and GPIB communications are used, for

example, in remotely configuring the outputs of the various function generators,

configuring and controlling the translation stage and logging the measurements

of the thermocouple monitor used during the chamber bakeout.

We note here that compared to the so-called hardware timing of the digital and

analog cards, which use a timing signal independent to that generated by the PC

operating system, GPIB and RS232 are software timed protocols whose output

timing is determined by the operating system and hence is subject to a much

larger jitter. There is additional uncertainty on these timings since the receiving

1 National Instruments, PXIe-1062Q
2 2.40GHz, Intel Core™2 Duo processor, Windows XP, 4Gb RAM
3 National Instruments, PXI-6533, PXI-6534
4 National Instruments, 2 × PXI-6713
5 Brainboxes Intashield, IS-400
6 National Instruments, GPIB-USB-HS
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Figure 3.33: Schematic of the control hierarchy in the experiment. The Word
Generator software communicates with the NI hardware to output digital and ana-
log signals. These are interfaced to the rest of the experiment via optical and
capacitive isolation circuits in order to avoid damage to the NI hardware from
voltage spike in the apparatus.

devices also require a few ms in order to receive and output the command. We

have found that the typical GPIB command strings used in our experiment, for

example to change the frequency and time constant of an evaporation sweep,

should not be instructed to be sent to the device less than roughly 100ms apart

in order to ensure a reliable response.

3.16.3 Word Generator

In addition to allowing the user to easily explore different experimental proce-

dures, well-designed control software enables swift debugging and optimization of

experimental sequences and control over a wide range of devices. In our experi-

ments we have made use of the Cicero Word Generator control package1, authored

by Aviv Keshet at the MIT Center for Ultracold Atoms2 and generously made

1 http://web.mit.edu/~akeshet/www/Cicero/
2 http://cuaweb.mit.edu/

http://web.mit.edu/~akeshet/www/Cicero/
http://cuaweb.mit.edu/
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available under the terms of the GNU General Public License1. This software2

allows users to visually configure complex sequences and includes many time-

and labour-saving features. In addition the software includes a variable timebase

feature which allows for the creation of sequences of much greater duration at

high temporal resolution by freeing the user from the constraint of a fixed timing

resolution and instead calculating a custom timing signal that only updates out-

put values when the experimental sequence requires their value to be changed.

This feature can also be used in conjunction with an additional low-cost FPGA

board3 to generate high-temporal-resolution sequences of effectively infinite du-

ration, and we make use of this functionality in our sequence design. Figure 3.33

shows the path of the control signal from the control software, via the PC and

PXI chassis to the breakout panels and finally the target instrument.

3.16.4 Digital and analog isolation

In order to protect the control hardware from voltage spikes that can occur within

the various instruments, as well as attempting to reduce the presence of ground

loops, all digital signals are isolated from the output cards by means of an op-

tocoupler4 circuit prior to breakout of the signals to BNC connectors. Analog

signals can also be isolated by means of an isolation amplifier5 circuit after their

breakout into BNC connectors6. The two types of isolation boards are shown in

figure 3.34, together with their respective single-channel circuit diagrams.

1 http://www.gnu.org/licenses/
2 Can be downloaded directly at: http://sourceforge.net/projects/cicerowordgener/

files/
3 Opal Kelly Inc., XEM3001
4 Fairchild Semiconductor, 6N138
5 Burr-Brown, ISO124P
6 Breakout panel: National Instruments, BNC-2110

http://www.gnu.org/licenses/
http://sourceforge.net/projects/cicerowordgener/files/
http://sourceforge.net/projects/cicerowordgener/files/
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4
The role of saturation in

Bose-Einstein condensation

“Proverbs for Paranoids:

1. You may never get to touch the Master, but

you can tickle his creatures.”

Thomas Pynchon, Gravity’s Rainbow

Abstract

In this chapter, we describe the first experiments carried out following our con-

densation of 39K. By harnessing our ability to tune the interaction strength, we

have been able to test the validity of Einstein’s textbook picture of BEC as arising

from saturation of the excited states of the system, as introduced in chapter 2.

We observe strong deviation from the saturation picture. In the small-condensate

limit, our results agree with a mean-field description of the interactions, while

for larger condensates these theories fail to capture the observed behaviour.

However, extrapolation of our measurements to the non-interacting limit allows

us to recover Einstein’s picture in a non-interacting gas.

123
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4.1 Introduction and motivation

Chapter 2 introduced the predictions for the onset of condensation in a non-

interacting Bose gas, but also pointed out that interactions are expected to modify

these predictions. This chapter presents the results of our investigations aimed at

addressing the question of whether excited-state saturation is indeed the driving

mechanism behind Bose-Einstein condensation, as originally envisaged by Ein-

stein [187], and our attempts at elucidating the role of interactions in the BEC

phase transition.

We recall that in the textbook theory of the non-interacting Bose gas, purely

statistical arguments set an upper bound N
(id)
c on the number of atoms NT occu-

pying the excited states of the system (see chapter 2, [187], [188],[123] and [144]).

In the case of the ideal, harmonically-confined Bose gas, the prediction for the

critical value of NT at which this saturation occurs is given by equation 2.70 [189].

NT 6 N (id)
c = ζ(3)

(
kBT

~ω̄

)3

(4.1)

where T is the temperature, ω̄ is the geometric mean of the trapping frequencies

and ζ is the Riemann function, with ζ(3) ≈ 1.202. The condensation observed

in weakly-interacting harmonically-trapped atomic Bose gases [23, 24, 182] is

generally believed to constitute a faithful representation of this statistical phase

transition. Figure 4.1 illustrates the saturation prediction and shows a plot of the

number of thermal (red line) and condensed (blue line) atoms as a function of the

total atom number. We emphasize that the term ‘saturation’ in this context refers

to the halt in the growth of the thermal component, predicted in the ideal-gas

case to coincide with the onset of condensation.

The idea of systematically scrutinizing the role of this saturation mechanism

in the BEC transition followed on from an observation made in the course of

experiments on the critical point of a two-dimensional Bose gas in the ENS group

(see footnote 31 of [190]). In these experiments, the linear slope of the curve

dN0/dNtot above (the blue line of figure 4.1) above the critical point was found to

take the value 0.7, clearly deviating from the unity slope expected for a saturated

gas.
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Figure 4.1: Saturated gas. The red and blue lines show the predicted thermal
atom number, NT, and condensed atom number N0, respectively, as a function of
the total atom number Ntot = N0 + NT for a saturated gas at fixed temperature.
The critical point, Nc, is indicated by the vertical and horizontal dashed lines.

Chapter outline

This chapter proceeds as follows:

• We first describe the experimental procedure we employ in order to probe

the saturation, or lack thereof, of our trapped gas (sections 4.2 and 4.3).

• We present the effects of varying both the interaction strength and the

temperature on the degree of deviation from the behaviour of a saturated

gas (section 4.4).

• In order to disentangle the roles of interaction strength and temperature

in Bose-Einstein condensation, we present two mean-field theories - the

Popov and self-consistent Hartree-Fock approximations - and compare our

non-saturation measurements to their predictions (section 4.5).

• Our results demonstrate that above a certain condensate size, these mean-

field theories can no longer reproduce the experimental observations and we

adopt a more heuristic approach in order to quantify the lack of saturation

in this regime (section 4.6).

• We use the results obtained using this approach to extrapolate to the limit

of a non-interacting gas and show that in this limit the saturation picture
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originally described by Einstein is recovered within our experimental errors

(section 4.6.1).

• We then summarize and discuss our results in the context of previously-

performed related experiments and the predictions of beyond-mean-field

theories (section 4.7).

4.2 Experimental procedure for investigating

saturation

In order to investigate the condensation process, we perform conceptually simple

experiments in which the temperature of the gas is kept constant while the atom

number is varied. We choose to vary the atom number by allowing the trapped

sample to gradually decay as a result of three-body recombination, scattering

of photons from the trapping laser beams and collisions with background atoms

in the vacuum chamber. Temperature variations are kept to a minimum by

stabilizing the power in the trapping lasers in order to fix the depth of the optical

potential.

The experiment begins with a partially condensed gas of 39K atoms in the

|F,mF〉 = |1, 1〉 state, prepared as described in chapter 3, at a scattering length

of a = 135a0. Following preparation of the sample, the optical trap depth is

raised slightly by ramping up the power in the trapping beams over 500ms in

order to prevent further evaporation and maintain a steady temperature for the

remainder of the experiment. The mean trapping frequencies for data taken at

different temperatures varies between ω̄ = 60− 80Hz. Once the final CDT power

is reached, the Feshbach field is ramped to its final value and the cloud is held

for up to several tens of seconds while the atom number decays.

Figure 4.2 shows the relevant part of the experimental sequence. The orange and

green lines show the value of the CDT power and Feshbach field, respectively, as a

function of time. We perform measurements over a range of interaction strengths

and at various temperatures. The temperature of a series is set by the final

depth of the optical trap and the scattering length is set by the final value of the

Feshbach field. We vary the scattering length over roughly an order of magnitude,

a = 40a0 − 356a0, and the temperature over the range T = 115− 284nK for the

different series. The dashed lines in figure 4.2 indicate the range of values taken

on by the Feshbach field and CDT power for these measurements.
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Figure 4.2: Experimental protocol. Orange and green lines show the value of
the CDT power and the Feshbach field respectively, as a function of time. The
atoms are cooled by an exponential ramp-down of the trap depth, with their final
temperature being set by the final trap depth and the scattering length being held
constant at a = 135a0 during the ramp-down. The CDT power is then raised
slightly in order to maintain a steady temperature during the ensuing hold time
and once the final CDT power is reached the Feshbach field is ramped to its final
value. Dashed lines delimit the ranges used for the two parameters in the different
experimental series.

While the total atom number decays due to inelastic and background collisions,

elastic collisions among the trapped atoms ensure equilibrium redistribution

of particles between the condensate and the thermal gas. Since the density-

dependent three-body recombination is expected to take place preferentially in

the cooler, denser region of the trap, heating of the sample might be expected.

Heating can also arise from light scattering in the optical trap. However any such

heating is at least partially compensated by residual evaporation taking place in

the finite-depth trap. For all the data presented in this chapter, the thermaliza-

tion rate is much higher than the atom-loss rate and hence the details of the loss

mechanism do not affect the quasi-static thermodynamic properties of the gas.

Ensuring thermal equilibrium

In general, a system with continuous dissipation can never be at true thermody-

namic equilibrium. The proximity to equilibrium for atomic gases depends on the

dimensionless parameter, γelτ , measuring the relative rates of elastic and inelastic



128 The role of saturation in Bose-Einstein condensation

processes. Here, γel is the elastic collision rate and τ is the timescale character-

izing losses arising from inelastic processes, often taken to be the 1/e-lifetime of

the cloud. Equilibration is usually taken to require 3 elastic collisions per particle

[191] implying γelτ � 1. Following [192], the mean elastic collision rate for each

atom (γel) is given by

γel = n(0)vth
σ0

2
(4.2)

with the central density, n(0), the thermal velocity, vth and the scattering cross-

section, σ0, given by1

n(0) = Nω̄3

(
m

2πkBT

)3/2

vth =

√
8kBT

πm
and σ0 = 8πa2 (4.3)

For example, a cloud of 4×105 39K atoms at T = 200nK and a scattering length of

a = 135a0 in an ω̄ = 80Hz trap has a mean elastic scattering time of 1/γel ≈ 13ms.

A basic condition for establishing global equilibrium in our system is that the

characteristic inelastic-loss time, τ , should be larger than the period of the trap-

ping potential, i.e. τ > 1/ω̄. The period of our optical trap in these experiments

varies between 2 − 2.7ms and we ensure that this global equilibrium criterion is

fulfilled for all the data reported below. Occasionally, data series will fulfil the

latter criterion without satisfying the former. For low scattering lengths this oc-

curs due to the drop in the elastic collision rate and for high scattering lengths

due to the drop in the inelastic-loss time. For this reason we excluded from

our analysis series taken at scattering lengths and temperatures in which unreli-

able distortions of the data, such as large temperature variations, w ere ascribed

to the onset of non-equilibrium effects. For example, for data series taken at

T ≈ 180nK, all series below roughly a = 60a0 were excluded from the analysis.

Chapter 5 contains a more detailed discussion of these equilibrium criteria in the

context of our measurements of the critical point of our trapped gas, where the

precision with which we want to measure the critical number Nc prescribes the

value of γelτ for which our sample is effectively at equilibrium.

Extracting numbers and temperature

For each hold time, we extract the condensate numberN0 and the thermal number

NT from a triple-pass bimodal fit, as described in section 3.15, after 18ms of free

1 Similar values of n(0) (smaller than 10% difference) are obtained for our experimental
parameters when using the ‘Bose-enhanced’ expression, n(0) = ζ(3/2)/λ3dB.
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time-of-flight expansion from the optical trap. Figure 4.3 shows the total number,

Ntot, and temperature, T , versus hold time for an experimental series taken at

a scattering length of a = 135a0 and a temperature of 177nK. The temperature

for Ntot > Nc shows no drift and has a standard deviation of 3nK. We assign a

nominal temperature, T ∗, to the entire series. T ∗ is taken to be the experimentally

measured temperature in the N0 → 0 limit, i.e. coinciding with the first non-zero

condensate number.
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Figure 4.3: Total atom number and temperature against hold time for an exper-
imental sequence taken with a = 135a0 and T = 177nK. The temperature shows
no drift for Ntot > Nc and has a standard deviation of 3nK. The atom number is
fitted with a double-exponential to guide the eye.

It is worth pointing out that harmonically trapped gases are well-suited for per-

forming such experiments, which require reliable and high-precision distinction

between the condensed and non-condensed components. This is due to the fact

that, contrary to uniformly confined Bose-condensed systems such as liquid he-

lium, condensation in harmonic traps manifests itself in coordinate space in ad-

dition to momentum space, causing the condensate to appear as a distinct peak

in the atomic density distributions recorded after time-of-flight in experiments.

This simplifies the extraction of occupation numbers from such distributions (see

e.g. [46, 123]).

4.3 Observation of non-saturation

Figure 4.4 is a plot of the thermal and condensate numbers against the total atom

number for the experimental series shown in figure 4.3. The total atom number
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is obtained by a direct summation over the density distribution rather than being

extracted from a fit to the data, and the relation Ntot = N0 + NT is found to be

satisfied for all data points to within 0.5%. The data has been overlain on the

ideal-gas saturation predictions of figure 4.1.
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Figure 4.4: Non-saturation in a weakly-interacting Bose gas. The thermal (red)
and condensed (blue) atom numbers are plotted against the total atom number for
the data series of figure 4.3 (a = 135a0, T = 177nK). Strong deviation from the
ideal-gas saturation prediction is observed, with approximately half of the atoms
added above the critical number being accommodated in the condensate.

The deviation of the experimental data from the ideal-gas prediction is striking.

In this example, as the total number is increased from the observed critical value,

Nc ≈ 200, 000, to 450,000, only half of the additional atoms accumulate in the

condensate.

4.4 Varying interaction strength and

temperature

As mentioned above, we repeat this procedure for a range of scattering lengths

and temperatures, ensuring that for the chosen values rethermalization is rapid

enough compared to the trap loss rate to maintain thermodynamic equilibrium.

Figure 4.5 shows the results of 18 such experimental series, focussing on the region

Ntot > Nc in which the condensate is present, and plotting N0 against Ntot−Nc.

The solid line shows the prediction for a fully-saturated thermal component:
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N0 = Ntot −Nc. The deviation of the data from this prediction is clearly seen in

all the series and grows with both a and T .
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Figure 4.5: Deviation from the saturation prediction for a range of scattering
lengths and temperatures. Shown is N0 vs. Ntot − Nc for 18 experimental series,
with the values of the scattering length (a = 40 − 356a0) and the temperature
(T = 115−284nK) encoded in the colour of the data points (see legend). The solid
black line is the saturated-gas prediction: N0 = Ntot −Nc.

4.5 Mean-field theories of interacting gases

In this section, we briefly review the two schemes most commonly used for taking

into account inter-atomic interactions - the Popov and self-consistent Hartree-

Fock approximations. These are both mean-field theories which avoid the diffi-

culty of solving the full many-body Schrödinger equation for an interacting system

by reducing the many-body problem to a one-body problem via the introduction

of an appropriate mean field potential generated by all the other particles. In

general, the effects of interactions are only expected to become sizeable in the

presence of a condensate, since only then does the peak density become suffi-

ciently high for the interactions to significantly modify the system’s properties.

We begin by tracing the derivation of the Hartree-Fock-Bogoliubov (HFB) mean

field equations. The main approximation used in the derivation of these equations
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(beyond the assumption of a contact interaction between the atoms and use of

the Bogoliubov approximation further along) is the introduction of mean fields

to replace what would otherwise be products of pairs of quantum field operators

in the Hamiltonian. In this way, terms cubic and quartic in the field operators

are reduced to linear and quadratic terms. In addition to simplifying the result-

ing equations for the condensate wavefunction and the excitation spectrum of

the system, this scheme forms a starting point for the Popov and self-consistent

Hartree-Fock approximations. The outlined derivation below roughly follows that

described in several sources (for example [193], [194], [195], [196], [144] and [123]).

Its main purpose is to introduce the mean-field description as well as to highlight

the difference between the Popov and self-consistent Hartree-Fock approxima-

tions.

4.5.1 Hartree-Fock-Bogoliubov mean-field theory

Our starting point is the second-quantized many-body Hamiltonian for a Bose

gas with contact interactions held in an external potential Vext(r) [123, 144]:

Ĥ =

∫
Ψ̂†(r)

(
−~2∇2

2m
+ Vext(r)

)
Ψ̂(r) dr +

g

2

∫
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) dr

where Ψ̂†(r) and Ψ̂(r) are the creation and annihilation field operators, respec-

tively, and in accordance with the Born approximation the microscopic interac-

tion potential has been replaced with an effective potential characterized by the

coupling constant g = 4π~2a/m introduced in equation 2.74. The equation of

motion for the field Ψ̂(r, t) in the Heisenberg representation is obtained from this

Hamiltonian as

i~
∂Ψ̂(r, t)

∂t
= [Ψ̂(r, t), Ĥ] =

(
−~2∇2

2m
+ Vext(r)

)
Ψ̂(r, t) + gΨ̃†(r, t)Ψ̃(r, t)Ψ̃(r, t)

(4.4)

where we have made use of the bosonic commutation relations

[Ψ̂(r), Ψ̂†(r′)] = δ(r′ − r), [Ψ̂(r), Ψ̂(r′)] = [Ψ̂†(r), Ψ̂†(r′)] = 0 (4.5)

The non-condensed, time-varying component of the field can be separated from

the stationary condensed component by writing the total field as the sum of a
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condensate wavefunction and an operator describing the fluctuations of the field

Ψ̂(r, t) = Φ(r, t)︸ ︷︷ ︸
condensate

+ ψ̃(r, t)︸ ︷︷ ︸
fluctuations

(4.6)

where the Bogoliubov approximation involves the assumption that since the

ground state is macroscopically occupied, the number of non-condensed atoms

is significantly smaller than the ground-state occupation number1. This form for

the total field is then inserted into the equation of motion 4.4. The self-consistent

mean field approximation consists of the linearization of the interaction term cu-

bic in the fluctuation field by reducing it to a set of interactions of a single field

with the mean field produced by the other two fields according to

ψ̃†(r, t)ψ̃(r, t)ψ̃(r, t) ' 2〈ψ̃†(r)ψ̃(r)〉ψ̃(r, t) + 〈ψ̃(r)ψ̃(r)〉ψ̃†(r, t) (4.7)

This yields an equation of motion whose stationary solution provides the equiv-

alent of the Gross-Pitaevskii equation for the spatially-varying condensate wave-

function, Φ(r)2

(
−~2∇2

2m
+ Vext(r)− µ+ g [n0(r) + 2nT(r)]

)
Φ(r) + gm̃(r)Φ∗(r)︸ ︷︷ ︸

‘anomalous’ term

= 0 (4.8)

where the chemical potential, µ, has been introduced since the condensate wave-

function evolves in time according to Φ(r, t) = Φ(r) exp(−iµt/~) and we have

introduced the condensate, thermal and ‘anomalous’ densities, n0(r), nT(r) and

m̃(r), respectively3

n0(r) = |Φ(r)|2

nT(r) = 〈ψ̃†(r)ψ̃(r)〉

m̃(r) = 〈ψ̃(r)ψ̃(r)〉 (4.9)

1 The Bogoliubov approximation consists of replacing both the creation (â†0) and annihilation
(â0) operators for the zero-momentum state by the real number

√
N0, where N0 is the

condensate occupation number.
2 The full expansion for the cubic field-operator term Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) within the

mean-field approximation is given by: Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) ' |Φ(r)|2Φ(r) + 2[|Φ(r)|2 +
〈ψ̃†(r)ψ̃(r)〉]ψ̃(r, t)+[Φ2(r)+〈ψ̃(r)ψ̃(r)〉]ψ̃†(r, t)+2Φ(r)ψ̃†(r, t)ψ̃(r, t)+Φ∗(r)ψ̃(r, t)ψ̃(r, t)

3 This notation is roughly consistent with that of [194].



134 The role of saturation in Bose-Einstein condensation

We also note that terms linear in ψ̃(r, t) have vanished from the original expan-

sion when taking the time average since the fluctuations are assumed to obey

〈ψ̃(r, t)〉 = 〈ψ̃(r)〉 = 0. In the T → 0 limit, when the thermal fraction can be

neglected, equation 4.8 reduces to the Gross-Pitaevskii equation introduced in

chapter 2 for the weakly-interacting gas.

We now turn our attention to obtaining the excitation spectrum in a similar man-

ner. Substituting the field decomposition of equation 4.6 into the Hamiltonian of

equation 4.4 and repeating the mean-field approximation for the resulting cubic

and quartic terms in ψ̃(r, t) and ψ̃†(r, t) results in a Hamiltonian which can be

diagonalized by the linear transformation

ψ̃(r) =
∑
i

(ui(r)α̂i − v∗i (r)α̂†i )

ψ̃†(r) =
∑
i

(u∗i (r)α̂†i − vi(r)α̂i) (4.10)

where α̂†i and α̂i are the creation and annihilation operators of the i-th elementary

excitation, respectively. Collecting the coefficients of α̂†i and α̂i in the expanded

Hamiltonian results in two coupled equations for the parameters ui(r) and vi(r)

- the so-called Hartree-Fock-Bogoliubov (HFB) equations(
−~2∇2

2m
+ Vext(r)− µ+ 2gn(r)− εi

)
ui(r)− gm(r)vi(r) = 0 (4.11)

(
−~2∇2

2m
+ Vext(r)− µ+ 2gn(r) + εi

)
vi(r)− gm∗(r)ui(r) = 0 (4.12)

with the total density, n(r), and the anomalous term, m(r), defined by

n(r) = 〈Ψ̂†(r)Ψ̂(r)〉 = |Φ(r)|2 + 〈ψ̃†(r)ψ̃(r)〉 = nc(r) + nT(r) (4.13)

m(r) = 〈Ψ̂(r)Ψ̂(r)〉 = Φ2(r) + 〈ψ̃(r)ψ̃(r)〉 = Φ2(r) + m̃(r) (4.14)

4.5.2 Popov approximation

The Popov approximation [197, 194, 195, 198, 123, 144] consists of neglecting

the anomalous density m̃(r) in equations 4.8, 4.11 and 4.12. This eliminates the

anomalous density term in equation 4.8 and replaces m(r) and m∗(r) in equations
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4.11 and 4.12 by n0(r), where we have used the Bogoliubov approximation to

replace Φ2(r) ' n0 (see equations 4.13 and 4.14).

The HFB equations therefore reduce to the Popov equations(
−~2∇2

2m
+ Vext(r)− µ+ 2gn(r)− εi

)
ui(r)− gn0(r)vi(r) = 0 (4.15)

(
−~2∇2

2m
+ Vext(r)− µ+ 2gn(r) + εi

)
vi(r)− gn0(r)ui(r) = 0 (4.16)

In the semi-classical approximation, the kinetic energy operators, −~2∇2/2m, in

equations 4.15 and 4.16 can be replaced by p2/2m and the excitation energies are

obtained as

ε(r,p) =
[
(p2/2m+ 2gn(r) + Vext(r)− µ)2 − (gn0(r))2

]1/2
(4.17)

The density of non-condensed atoms in this approximation is then given by

nT(r) =

∫
dp

(2π~)3

p2/2m+ 2gn(r) + Vext(r)− µ
ε(r,p)

1

eε(r,p)/kBT − 1
(4.18)

where ε(r,p) is given by equation 4.17 and the factor multiplying the excitation

distribution function is the ratio of the particle energy in the Hartree-Fock ap-

proximation (see below) to that in the Popov approximation. This corresponds

to the number of non-condensed particles associated to a given excitation and

ensures that we are effectively summing particles and not excitations when cal-

culating the particle density, nT(r).

The condensate density, n0(r) = |Φ(r)|2 is found by solving equation 4.8 with the

‘anomalous’ term involving m̃(r) omitted, namely

(
−~2∇2

2m
+ Vext(r)− µ+ g [n0(r) + 2nT(r)]

)
Φ(r) = 0 (4.19)

within the Thomas-Fermi approximation, the first term of equation 4.19 can be

neglected and the chemical potential is then given by

µ = Vext(r) + g [n0(r) + 2nT(r)] (4.20)

The four equations, 4.17, 4.18, 4.19 and 4.20 must be solved self-consistently in
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order to find the thermal and condensate densities.
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Figure 4.6: Popov density profiles. Cuts through the thermal (red) and condensate
(blue) in-situ spatial density distributions for a cloud with Ntot = 105 atoms at T =
150nK. The dimple in the thermal cloud is a result of repulsion by the condensate.
The black dashed line shows the total density distribution, ntot = nT + n0.

We note that at very low temperatures, when the non-condensed fraction nT

can be neglected, the Popov spectrum of equation 4.17 reduces to the usual

Bogoliubov quasi-particle excitation spectrum (see for example [199, 123]) and,

as we have already mentioned, equation 4.19 for the condensate wavefunction

reduces to the usual Gross-Pitaevskii equation introduced in chapter 2. At higher

temperatures, when the condensed fraction n0(r) can be neglected, the Popov

spectrum coincides with the Hartree-Fock spectrum (see below).

4.5.3 Self-consistent Hartree-Fock approximation

A further simplification of the full Hartree-Fock-Bogoliubov equations is the so-

called self-consistent Hartree-Fock approximation, which is widely accepted as

providing the simplest scheme for addressing the effects of atomic interactions in

a Bose gas.

Mathematically, the approximation consists of again neglecting m̃(r) in equations

4.8, 4.11 and 4.12 and in addition neglecting any of the collective effects arising

in the HFB and Popov approximations. The latter approximation amounts to

neglecting the parameter vi(r) in equations 4.10 and hence in equations 4.11 and
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4.11, which therefore yield the simplified, single-particle, excitation spectrum

εHF(r,p) =
p2

2m
+ Vext(r) + 2gn(r) (4.21)

with n(r) = nc(r) + nT(r) as in equation 4.13. Within this approximation, the

condensate density is still found from equation 4.19 and the thermal density nT(r)

is now obtained using

nHF

T (r) =

∫
dp

(2π~)3

1

e(εHF(r,p)−µ)/kBT − 1
(4.22)

Physically, this approximation corresponds to treating the thermal component as

a gas of ‘non-interacting’ atoms moving in a self-consistently determined mean-

field potential given by

Veff(r) = Vext(r) + 2gn(r) = Vext(r) + 2g[n0(r) + nT(r)] (4.23)

Two further simplifications can be made as a consequence of the relative dilute-

ness of the thermal component compared to the condensate:

1. Firstly, one can neglect any influence of the thermal component on the

spatial distribution of the condensate wave function1. Setting nT(r) = 0 in

equation 4.19 and applying the Thomas-Fermi (TF) approximation2 gives

the usual TF profile for the condensate

n0(r) = max[(µ0 − Vext(r))/g, 0] (4.24)

where the normalization condition
∫
n0(r)dr = N0 on the condensate den-

sity yields the chemical potential

µ0 =
~ω̄
2

(
15N0

a

aho

)2/5

(4.25)

Note that this expression is strictly equal to the actual chemical potential,

µ, only in the zero-temperature limit. More generally, µ0 provides the

1 We note that in [186], a small deviation from this approximation was observed in the form
of a ∼ 4% compression of the condensate length from its predicted TF size.

2 Use of the Thomas-Fermi approximation is valid as long as N � aho/a (i.e. N0 � 100 to
1000 for our parameters)
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characteristic energy scale for the interactions1 and its scaling with N
2/5
0

will inform the analysis of our experimental data (see section 4.6 below).

2. Secondly, we can neglect the mean-field energy, 2gnT(r), due to the thermal

component itself, so that the effective potential experienced by the thermal

atoms is then given by

Veff(r) = Vext(r) + 2gn0(r) = |Vext(r)− µ0|+ µ0 (4.26)

Figure 4.7 shows an illustration of the potential, Veff(r), experienced by the ther-

mal atoms in this approximation, which has the form of a 3D ‘Mexican hat’. We

note that under these approximations, the Hartree-Fock theory reduces to the

so-called ’semi-ideal’ model, [200, 201, 202]. This model has been used in the

analysis of several previous experiments, as discussed in section 4.7 at the end of

this chapter.

Figure 4.7: Illustration of the “Mexican hat” potential of equation 4.26 experi-
enced by the thermal atoms as a result of their interaction with the condensate at
the centre of the trap and the external harmonic potential.

In neglecting the contribution of the thermal atoms to the mean-field potential,

the second approximation also amounts to neglecting the mean-field shift of the

critical temperature due to interactions. This shift will be discussed in more

detail in chapter 5 where our observation of the mean-field Tc shift, in addi-

tion to observation of beyond-mean-field effects on the critical temperature, are

presented.

1 In the zero-temperature Thomas-Fermi limit, for example, the chemical potential is related
to the interaction energy per particle according to Eint/N = (2/7)µ0.
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Using the above expression for Veff(r), the number of thermal atoms at a given

temperature in the presence of a condensate of N0 atoms can be estimated by

integrating equation 4.22, i.e.

NT =
1

(2π~)3

∫ {
exp

[
1

kBT

(
p2

2m
+ Veff (r)− µ

)]
− 1

}−1

d3p d3r (4.27)

Introducing the dimensionless variables

R =
r

RT

α0 =
µ

kBT
(4.28)

with RT =
√
kBT/mω2, we can express the thermal atom number after perform-

ing the momentum integral in equation 4.27 as

NT = 4π

(
RT

λT

)3 ∫ ∞
√

2α0

R2g3/2(e−R
2/2+α0)dR (4.29)

Making the substitution X2 = R2 − 2α0, the above integral becomes

NT = 4π

(
RT

λT

)3 ∫ ∞
0

(X2 + 2α0)1/2g3/2(e−X
2/2)XdX

≈ 4π

(
RT

λT

)3 ∫ ∞
0

X2(1 + α0/X
2)g3/2(e−X

2/2)dX (RTF � RT)

= 4π

(
RT

λT

)3 ∫ ∞
0

X2g3/2(e−X
2/2)dX︸ ︷︷ ︸

ζ(3)
√

π
2

+4π

(
RT

λT

)3

α0

∫ ∞
0

g3/2(e−X
2/2)dX︸ ︷︷ ︸

ζ(2)
√

π
2

=

(
kBT

~ω

)3

[ζ(3) + α0ζ(2)] (4.30)

In going from the first to the second row of equation 4.30 we have made the

assumption that the condensate size is small compared to the thermal radius,

RTF � RT, and hence that α0

X2 � 1. Using equation 4.1 for the ideal gas critical

number, N
(id)
c , we are left with

NT

N0
c

= 1 +
ζ(2)

ζ(3)
α0 ≈ 1 + 1.37α0 = 1 + 1.37

µ

kBT
(4.31)

It has in fact been shown [203, 196, 46] that the description of the thermodynamic

behaviour of an interacting Bose gas in the thermodynamic limit for a given
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atom number, trap geometry, scattering length, etc., is fixed by the values of

two dimensionless parameters: the reduced temperature, t = T/T
(id)
c , and the

interaction parameter, η defined as

η ≡ µ

kBT
(id)
c

' 1.57

(
N1/6 a

aho

)2/5

(4.32)

where µ is the zero-temperature chemical potential in the Thomas-Fermi limit1.

In the experiments described in this chapter, η, which quantifies the relative

importance of interactions, spans the range η = 0.21 → 0.61. A related di-

mensionless interaction parameter is given by, a/λ0, the ratio of the scattering

length to the thermal wavelength evaluated at the ideal-gas critical temperature.

This parameter will be used in chapter 5 since most theories for the shift in Tc

are formulated in terms of expansions in this quantity. η and a/λ0 are related

via η ≈ 2.3 · (a/λ0)2/5 and hence in the current experiments, we have probed the

range a/λ0 = 2.7×10−3 → 3.6×10−2. Physically, the origin of the non-saturation

predicted in this Hartree-Fock scheme can therefore be understood as resulting

directly from the geometry of the effective ‘Mexican hat’ potential allowing the

thermal component to occupy a larger volume, which grows with increasing N0.

4.6 Comparing experiment and theory

We initially compare our measurements to the more analytically-tractable predic-

tions of Hartree-Fock theory above. Guided by the scaling implied by equations

4.25 and 4.31, we plot the thermal atom number, NT, as a function of N
2/5
0 . Fig-

ure 4.8 shows this plot for the a = 135a0, T = 177nK series shown in figures 4.3

and 4.4. From equations 4.25 and 4.31 we define the ‘non-saturation slope’ SHF:

SHF = dNT/d(N
2/5
0 ) = 1.37X (4.33)

where X is an interaction parameter, defined by

X = ξT 2a2/5 where ξ =
1

2
ζ (3) 152/5

(
kB

~ω̄

)2

a
−2/5
ho (4.34)

The blue line in figure 4.8 corresponds to this prediction, with the y-axis intercept

fixed by the measured value of Nc. As can be seen in figure 4.8, the Hartree-Fock

non-saturation slope agrees well with the data in the regime of small condensates

1 This has the same functional form as equation 4.25, with the replacement N0 → N .
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Figure 4.8: Quantifying the lack of saturation. The thermal number, NT, is

plotted against N
2/5
0 for the series shown in figures 4.3 and 4.4. The horizontal

dotted line is the saturation prediction NT = Nc. The blue line is the mean-
field Hartree-Fock result of equation 4.31 for a harmonically trapped gas for the
appropriate scattering length (SHF = 699). The orange line is the prediction of the
Popov approximation for the experimental parameters used. The solid red line is
a linear fit to the data in the large-condensate regime, as discussed below, and the
black line is a second-order polynomial fit to guide the eye.

with N0 . 104, corresponding to µ0/kBT . 0.1, whereas the data deviates from

the HF prediction for larger values of N0. On figure 4.8 we have also plotted

the prediction of the Popov theory for the relevant experimental parameters. In

the small-condensate regime, the Popov result is almost indistinguishable from

the Hartree-Fock prediction and its departure from the linear HF curve for larger

condensates still fails to describe the observed growth of the thermal component.

In order to more quantitatively test the predictions of equation 4.31, we took

several series at different scattering lengths (a = 56 − 274a0) and temperatures

(T = 177 − 317nK), focussing on the regime of very small N0. The method

we use to reliably detect and measure small condensates involves turning off the

interaction strength during time-of-flight and performing a direct summation of

the optical density. It is described in more detail in chapter 5 in the context of

our investigations into the interaction-shift of the transition temperature Tc. For

each of these series, we fit the initial non-saturation slope S0 = dNT/d(N
2/5
0 ) for

N0 → 0, and compare the result with the prediction SHF = 1.37X. Figure 4.9



142 The role of saturation in Bose-Einstein condensation

shows the results of this comparison, in which experiment and theory agree to

within a few percent.

Since, as mentioned above, two independent parameters, t and η are required

in order to fully capture the mean-field behaviour, we do not expect our simpli-

fied non-saturation slope S0 to scale exactly with the interaction parameter, X.

Despite this, the agreement with our single-parameter theory is good.

0 400 800 1200 1600
0

1000

2000

S 0

X

Figure 4.9: Agreement of the initial non-saturation slope, S0 with the prediction
of the ‘semi-ideal’ Hartree-Fock theory. The blue line shows the prediction of
equation 4.31. The vertical error bars are statistical, with the < 10% systematic
uncertainty on NT and N0 corresponding to a < 6% uncertainty in S0. Horizontal
error bars include the 3Hz uncertainty in the trapping frequencies ω̄/2π and (for
39K) the 0.1G uncertainty in the position of the Feshbach resonance.

The agreement of figure 4.9 with HF theory is the first main quantitative result of

this investigation. From it we can deduce that the initial non-saturation slope S0

would indeed vanish in the non-interacting limit, in which µ0 → 0 for any value

of N0.

Figure 4.10a shows the predictions of the Popov approximation for the thermal

and condensate numbers for different values of the scattering length, at a tem-

perature of T = 200nK, while figure 4.10b shows the data of figures 4.3 and 4.4

compared to the Popov model for the same experimental parameters. It is ap-

parent from this plot that the mean-field Popov model does not fully capture the

extent of the non-saturation observed in our clouds.

In order to quantitatively study the non-saturation effects taking place at larger

N0, where the data is no longer well described by the Hartree-Fock theory, we

adopt a more heuristic approach. Although the observed increase of NT with

N
2/5
0 is not perfectly linear, over a broad experimentally relevant range it can be

well quantified by a coarse-grained slope S = ∆[NT]/∆[N
2/5
0 ], as indicated by the

solid red line in figure 4.8. In order to treat data taken at different values of X,
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Figure 4.10: The Popov model. Figure (a) shows the predictions of the Popov
approximation for different scattering lengths (a = 5, 40, 135, 200, 400a0) at a tem-
perature of T = 200nK. Figure (b) compares the experimental non-saturation data
to the corresponding Popov prediction, which fails to fully capture the degree of
non-saturation.

i.e. different values of a and T , equally, for each experimental series we consider

the same range of values of µ0/kBT , from 0.1 to 0.3. Note that this range spans

more than an order of magnitude of N0 values and encompasses the bulk of the

data shown in figure 4.5.

It is worth pointing out that the data shown in figure 4.8 can equally be described

by a second-order polynomial fit, instead of using the two slopes, S0 and S.

However, such a fit relies on precise measurements at very low N0, which are

often not available. This is the reason we have chosen to use a single empirically

defined parameter S for describing the experiments, valid over the typical range of

N0 values. Figure 4.11 shows the obtained slopes S(a, T ) for the 18 experimental

series of figure 4.5. Within experimental error, all data points fall onto a straight

line when plotted against the dimensionless variable, X = ξT 2a2/5, supporting

the assumption that µ0/kBT can still used as the relevant interaction parameter.

In order to further demonstrate the universality of our results and the validity of

our approach, figure 4.11 also shows data taken with a different atomic species,
87Rb. This species was held in the |F,mF〉 = |2, 2〉 state and its scattering length

of a = 99a0 is not tuneable. Two series were taken with this species, at T = 175nK

and at T = 203nK. These two data points lie well within the spread of the 39K

data. The contributions of temperature drifts and finite-size effects to the data

must also be considered. We compensate for the small temperature drifts as

described below, while finite-size effects are shown to have no influence on the

exhibited degree of non-saturation.
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Figure 4.11: Saturation in the non-interacting limit. The large-N0 slopes, S,
for the 18 data series of figure 4.5 and two additional 87Rb series (black points),
plotted against the dimensionless interaction variable, X, of equation 4.34. An
unconstrained linear fit to the data gives an intercept S(0) = −20±100, consistent
with complete saturation in the ideal-gas limit. See the caption of figure 4.9 for an
explanation of the error bars.

Correcting for temperature drifts

In our experimental series, we occasionally encounter temperature drifts of up to

a few percent over the course of the series. We analytically correct for these drifts

by scaling every (NT,N0) pair according to the scaling suggested by Hartree-Fock

theory. We scale each experimental series by its nominal temperature, T ∗. This

corresponds to plotting NT(T ∗/T ′)3 against N
2/5
0 (T ∗/T ′) in figure 4.8, where T ′

is the temperature assigned to each data point. T ′ is found by first performing

an exponential fit to a plot of measured temperature, Tm, against image index1.

The value of this fit gives each image a temperature, Ti. We then perform a

linear fit to the plot of Tm/Ti against N0, yielding a factor, fN0, for each image2.

T ′ is then given by: T ′ = Ti ∗ fN0. In plain words, this correction corresponds

to scaling the thermal and condensate atom numbers of each data point to the

relative values they would take on, according to the Hartree-Fock theory, were

they at the nominal temperature of the series they belong to. This correction is

1 This is to take account of temperature drifts resulting from changes in the lab environment
over the course of the day

2 This takes into account the drift of temperature with decreasing condensate number.
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valid to first order, even though the HF theory is imperfect, since the temperature

corrections involved are small.

Finite-size effects

The first correction to the ideal-gas prediction, N0/Ntot = 1− (T/T
(id)
c )3, due to

the effect of finite particle number has been found analytically by studying the

large-N limit of the expression for the total number of particles at temperature

T [204, 205, 206, 207]

N =
∞∑
i=0

N(εi) =
∞∑
i=0

1

e(εi−µ)/kBT − 1
(4.35)

The result is given by

N0

N
= 1− t3− 3ωhoζ(2)

2ω̄(ζ(3))2/3
t2N−1/3︸ ︷︷ ︸

finite-size correction

(4.36)

where ωho is the arithmetic mean of the trap frequencies and t = T/T
(id)
c is

the reduced temperature introduced above. This expression has been shown to

be indistinguishable from the exact value obtained using equation 4.35 already

for N = 1000 [206]. As an example, for t = 0.75 and an atom number of

2× 105, with typical trapping frequencies, ω/2π = (65, 65, 84)Hz, the condensed

fraction is reduced by roughly 1.9% from its ideal gas value of 58%. However,

inserting expression 2.69 for T
(id)
c shows that the shift in the absolute number

N0 does not depend on the total number N and is instead given by δN0 =

−(kBT/~ω̄)2(3/2)(ωho/ω̄)ζ(2). At a given temperature, this is simply equivalent

to a uniform shift in the critical number, which in figure 4.8, corresponds to

a uniform vertical shift of the data. This does not affect the extracted non-

saturation slopes and hence leaves the results of this chapter unchanged. Chapter

5 discusses finite-size effects on the shift of the critical temperature which must

be taken into account when measuring the interaction-shift of T
(id)
c .

4.6.1 Extrapolation to the non-interacting limit

The saturation prediction of equation 4.1 for an ideal gas (a = 0) corresponds

to S = 0 at the origin of the graph in figure 4.11. It is important to distinguish
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between the two ways in which the interaction variable, X ∝ T 2a2/5, can approach

zero. In the T → 0 limit, NT vanishes for any value of N0 and so trivially S = 0.

It is therefore important for us to demonstrate that the slope S depends only on

the combination T 2a2/5, allowing us to obtain its value in the a → 0 limit for

any fixed, non-zero value of T . The solid red line in figure 4.11 shows the result

of this extrapolation by means of an unconstrained linear fit to the data. The

resulting value of the intercept, S(0) = −20±100, together with the demonstrated

agreement with Hartree-Fock theory in the small-N0 limit, confirm the concept of

a saturated Bose gas over a broad range of experimentally relevant parameters.

4.7 Discussion and Conclusions

The experiments described in this chapter consisted of probing the dependence

of the condensed fraction on the total atom number at a constant temperature.

This contrasts with the numerous studies, dating from some of the earliest ex-

perimental investigations of BEC to the present day, which have focussed on

measurement of the condensed fraction as a function of temperature and hence

have never explicitly and systematically addressed the issue of non-saturation of

the thermal component.

Nevertheless, these experiments drew attention to the need for a proper treatment

of the effect of interactions on Bose-Einstein condensation by providing clear

evidence of the inadequacy of ideal-gas theory. Below is a brief chronologically-

ordered summary of those results most directly related to the experiments carried

out in our group and described in this chapter and in chapter 5.

Already within the few years following the first experimental realization of BEC

in dilute atomic gases, several experiments [208, 209, 210] compared the predic-

tions of ideal-gas theory with their experimental findings. Figure 4.12 shows the

chronological progression towards more precise condensed-fraction measurements,

revealing ever more clearly the deviations from the ideal-gas picture.

The first experiment to clearly demonstrate non-ideal behaviour was [209] (see

figure 4.12b), whose results also served as a helpful benchmark for subsequent

development and testing of mean-field models for interacting clouds (see e.g.

[201, 123]).

Later studies [211, 212] also observed deviation from ideal-gas theory and instead

found agreement with the ‘semi-ideal’ theory [201, 200]. In [213], the authors ex-

plicitly investigated the mutual interactions between the condensed and thermal
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Figure 4.12: The results of [208] (figure (a)), [209] (figure (b)) and [186] (figure(c))
for the condensed fraction, N/N0, as a function of the reduced temperature, T/T 0

c .
The increasing precision of the measurements has enabled more detailed comparison
with mean-field models.

components. This experiment focussed on the narrow region at the interface be-

tween the condensate and the thermal cloud, which was expected to be sensitive

to these interactions. It was demonstrated that a dynamical model for the cloud’s

expansion based on the HFB theory presented in section 4.5 provided a good fit

to the experimental data, which clearly displayed a repulsion of the thermal cloud

by the condensate in images taken after time-of-flight (see Fig. 2 of [213]).

A more comprehensive study was performed in [186], which measured the con-

densed fraction, expansion energy and equilibrium shape of a partially-condensed
87Rb cloud. The use of Bragg scattering enabled the detection of larger condensed

fractions and accurate fitting of the thermal component at lower temperatures

than any previous study. The resulting condensed-fraction curves showed clear

deviation from the ideal-gas prediction (see figure 4.12c) and were compared to

both the semi-ideal model [201, 200], including finite-size effects, and to the self-

consistent Hartree-Fock theory described in section 4.5. The semi-ideal model

failed to reproduce the results (as in our experiments) although the self-consistent

Hartree-Fock theory yielded good agreement within experimental errors. The

authors also investigated the effect of the thermal cloud on the condensate by

studying its axial length as a function of temperature. The axial length is ex-

pected to grow very slowly due to the large aspect ratio of the trapping potential

(ωz/ωr ≈ 0.02) and hence to closely reflect its in-situ value. A compression of the

condensate by the thermal cloud is observed. The semi-ideal model, which explic-

itly neglects such effects, unsurprisingly fails to fully account for this compression

whereas the Hartree-Fock model provides good agreement with the data. This

result again illustrates the over-simplicity of the semi-ideal model under typical
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experimental parameters, as also shown by our results.

Furthermore, experiments described in [214] explicitly report the breakdown of

Hartree-Fock mean-field theory in relatively small (Ntot≈ 104), nearly-1D clouds

of 87Rb. The authors observe the appearance of a quasi-condensate in the centre

of the trap and show that Hartree-Fock theory fails to predict its existence, which

is consequently attributed to interaction-induced correlations between the atoms

as opposed to saturation of the excited states.

Two studies bearing conceptual similarities to the experiments reported in this

chapter have been published in the last few years. In [215], condensation was

studied in a spinor gas in which atoms were gradually transferred from two con-

densed spin components into an initially-unpopulated spin state. Non-saturation

of the growing thermal cloud was not reported. However, since this component

experiences a potential modified by interactions with the already existing con-

densates, it is probable that non-saturation effects were merely obscured by the

complicated dynamics of the system. The second study reports on the realization

of a BEC in a photon gas [216]. In this system, despite the absence of a direct

interaction between the photons, their thermalization via collisions with the dye

molecules within the microcavity to which they are confined leads to a second-

order interaction between the light particles. The non-saturation arising from

this effective interaction is visible in figure 2 of [216] as a clear increase of the

area under the ‘thermal’ part of the spatial intensity distribution as the number

of photons in the system is increased (at room temperature).

To this long line of investigations, the results of this chapter add the demon-

stration that under typical experimental circumstances, atomic Bose gases show

strong deviation from the saturation picture. In addition, this deviation is not

fully reproduced by the most commonly-used mean field theories. Our experi-

mental control over the interparticle interaction strength, however, has enabled

us to extrapolate our results to the non-interacting limit and to provide the

first direct evidence for excited-state saturation as the driving mechanism behind

Bose-Einstein condensation, confirming the purely statistical nature of the BEC

phase-transition as originally described by Einstein. We expect these results to

be generic to experiments on harmonically trapped 3D Bose gases with (relatively

weak) short-range s-wave interactions.

There exist several possible avenues for future research :

1. We have so far measured only global properties (total numbers). In the
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future it would be interesting to study saturation and other thermody-

namic behaviour at the local level, by probing local thermal and condensate

densities. This would enable us to infer the effective equation of state of

the bulk system, as proposed in [217] and demonstrated, for example, in

[218, 219, 220, 221].

2. The ability to probe local densities would also allow investigation of the

effects of different interaction potentials, such as very strong or long-range

interactions, which might influence saturation at the local level.

3. Trap geometry influences the behaviour of the thermal gas. The excluded-

volume argument for non-saturation suggests that the effect grows with the

dimensionality of the system and so it would be interesting to explore lower-

dimensional as well as disordered geometries. In this context, Appendix F

describes our progress towards the implementation of a tightly-confining

optical potential for studies of two-dimensional systems.





5
Interaction-dependence of the

BEC transition temperature

“. . . I tell you there is no such message, no such home – only the millions of last

moments . . . nothing more. Our history is an aggregate of last moments.”

Thomas Pynchon, Gravity’s Rainbow

Abstract

While chapter 4 was concerned with the effects of interparticle interactions on

trapped gases below the critical temperature, in the presence of a finite condensed

fraction, this chapter describes experiments on the effects of these interactions

on the value of the transition temperature itself, i.e. in the limit of vanishing

condensate fraction. We observe for the first time the beyond-mean-field (bMF)

corrections to Tc in a harmonically-trapped gas and also observe non-equilibrium

effects on the apparent critical temperature in the regime of both very weak and

very strong interactions.

151
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5.1 Introduction and theory

As discussed in section 2.7, the critical temperature, Tc, is defined as the tem-

perature at which the condensed fraction in the gas vanishes, N0 → 0 and is one

of the most fundamental quantities in the study of the BEC phase transition.

While clear predictions exist for the critical temperature of a non-interacting gas,

the effects of (repulsive) interparticle interactions on the condensation temper-

ature have been the subject of theoretical debate for over fifty years, since the

pioneering work of Lee and Yang [222, 223] on a homogeneous gas of hard-core

bosons.

Despite the success of mean-field theories in predicting a broad range of prop-

erties such as the spatial distribution of the dilute gas in a harmonic trap, its

low-energy excitation spectrum and its small-amplitude oscillations, correlations

between the atoms due to their interactions are also expected to play an im-

portant role in many phenomena. These include the properties of superfluid

vortices, decoherence, quantum depletion, and others. Correlations also provide

corrections to the predicted mean-field values of thermodynamic quantities such

as the energy per particle and the transition temperature. Indeed, the former of

these was recently measured in an experiment carried out in the ENS group in

Paris using a gas of 7Li [220], while observation of the latter is the subject of this

chapter, which is structured as follows:

• Following a short summary of the theoretical predictions for the shift of

Tc with interaction strength in both a uniform and harmonically-trapped

gas, we briefly review previous experimental measurements of the transition

temperature in trapped interacting clouds.

• We then describe our experimental sequence and analysis procedure for

measuring the shift of the critical temperature over a wide range of inter-

action strengths, and present our results for those measurements believed

to be at thermodynamic equilibrium.

• Finally we discuss the stringent requirements for performing equilibrium Tc

measurements, which are violated in the regimes of either very weak or very

strong interactions, and discuss their physical origins and significance.

• We conclude and discuss directions for future study.
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5.1.1 Tc-shift in a uniform system

We recall that in an ideal, homogeneous bose gas, the transition temperature is

given by

T (id)
c =

(
n

ζ(3/2)

)3/2
2π~2

kBm
(5.1)

which corresponds to the condition that the phase-space density reach its critical

value nλ3
0 = ζ(3/2) ' 2.612, as discussed in section 2.7. The fractional shift of

this quantity by the inclusion of interactions is defined by

∆Tc

T
(id)
c

≡ Tc

T
(id)
c

− 1 (5.2)

and is usually calculated as a function of the diluteness- or gas parameter

δ ≡ an1/3 (5.3)

i.e. the effect of interactions can be increased by either raising the atomic density,

n, or by increasing the scattering length, a, for example by accessing a Feshbach

scattering resonance.

At the mean-field (MF) level, the shift of the uniform-system critical temperature

vanishes identically. Within this approximation, the interaction energy is given

by Uint = 2gn, where g is the interaction strength and n the density. A particle

with momentum p within this approximation therefore has an energy ε(p) =

p2/2m + 2gn. The result of this energy shift is a shift in the critical value of

the chemical potential, µc, but not in that of the transition temperature. This is

easily seen by looking at the modification of the equation of state from that of an

ideal gas, arising from use of this expression for the energy (c.f. equation 2.64)

nλ3
T = g3/2(eβµ)

ε(p)→ε(p)+2gn⇒ nλ3
T = g3/2

(
eβ(µ−2gn)

)
(5.4)

where β = 1/kBT . At the transition, namely the point at which the argument

of g3/2 goes to 1, the criterion nλ3
T = ζ(3/2) remains unchanged. The chemical

potential now has to reach a value higher by 2gn than its previous maximal

value, but the value of Tc is unaffected. In general, any constant shift in the

single-particle energies cannot change the critical temperature of the gas. A

correct calculation of the Tc shift therefore requires taking into consideration the

correlations which develop near the critical point and are not captured within
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mean-field theory.

This is a challenging task and only in the first few years of this century has the

community converged on a consensus for the functional dependence of the Tc shift

on the gas parameter. For an overview of these developments, see e.g. [224, 225,

226, 227]. Table 5.1 summarizes the evolution of the theoretical predictions since

the middle of the 20th century.

Year Author(s) Prediction

1953 Feynman [228] ∆Tc < 0

1958 Lee & Yang [223] ∆Tc

T
(id)
c

∼ aρ1/3

1960 Glassgold, Kaufman & Watson [229] ∆Tc

T
(id)
c

∼ (aρ1/3)1/2

1964 Huang [230] ∆Tc

T
(id)
c

∼ (aρ1/3)1/2, (a > 0)

1971 Fetter & Walecka [231] ∆Tc

T
(id)
c

< 0

1982 Toyoda [232] ∆Tc

T
(id)
c

≈ −3.5(aρ1/3)1/2

1992 Stoof [233] ∆Tc

T
(id)
c

= caρ1/3 +O(aρ1/3)

1996 Bijlsma & Stoof [234] c=4.66

1997 Grüter, Ceperley & Laloë [235] c=0.34

1999 Holzmann, Grüter & Laloë [236] c=0.7

1999 Holzmann & Krauth [237] c=2.3

1999 Baym, Blaizot, Holzmann, Laloë & Vautherin [238] c=2.9

1999 Huang [239] ∆Tc

T
(id)
c

≈ 3.5(aρ1/3)1/2

2000 Reppy et. al. [240] c=5.11

2001 Arnold & Moore [224] c=1.32

2001 Kashurnikov, Prokofev & Svistunov [241] c=1.29

2003 Kleinert [242] c=1.14

2004 Kastening [243] c=1.27

2004 Nho & Landau [244] c=1.32

2010 Betz & Ueltschi [245] c=-2.33

Table 5.1: Summary of the various functional dependencies and numerical coef-
ficients predicted (and measured: [240]) for the lowest-order shift in the critical
temperature of the homogeneous dilute Bose gas.

1 It was pointed out in [241] that the estimation of the interparticle scattering length in this
study was not correct.
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It is now generally accepted that in a dilute Bose gas the Tc shift is, to first order,

linear in the gas parameter ([234, 238, 237, 240, 224, 241, 246, 225, 226, 227]), with

repulsive interactions believed to enhance condensation, i.e. shift the transition

temperature above its ideal-gas value1, with the coefficient having a value of

approximately c ≈ 1.3 [224, 241]:

∆Tc

T
(id)
c

≈ 1.3an1/3 ≈ 1.8
a

λ0

(5.5)

In the above expression, we have introduced the alternative interaction parameter

a/λ0, with a the scattering length and λ0 the thermal wavelength at the ideal-gas

critical temperature. Conversion between the two parameters is done using the

usual relationship nλ3
0 = ζ(3/2).

5.1.2 Tc-shift in a non-uniform system

The problem of the interaction shift of Tc in experiments on ultracold atomic

gases is made even more complex by the fact that these systems are produced in

harmonic traps. For a harmonically trapped gas, the condensation temperature

is defined for a given atom number N , rather than for a given density due to the

inhomogeneity of the cloud.

As mentioned previously, the ideal gas prediction for the transition temperature

in a trap of geometric-mean frequency ω̄ is

T (id)
c =

~ω̄
kB

(
N

ζ(3)

)1/3

(5.6)

where ζ(3) ≈ 1.202. This criterion corresponds to a phase-space density in the

trap centre equal to the uniform-system critical value i.e. n(0)λ3
T = ζ(3/2). The

interaction shift of the critical point can therefore be expressed either as a shift

in the critical temperature for a given atom number, ∆Tc(N), for the purposes

of comparison with theoretical literature, or as a shift in the critical number at

a given temperature, ∆Nc(T ), for easier visualization (as in figures 5.1 and 5.8,

below) and more closely related to our experimental procedure for determining

the critical point, described in section 5.3.

1 Namely, condensation is predicted to occur at a phase space density below the ideal gas
critical value of ζ(3/2) ≈ 2.612.
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Two opposing effects compete in determining the overall shift of the critical point

in a trapped gas: similarly to the homogeneous gas and in the spirit of the

local density approximation (LDA), correlations near the critical point should

act to reduce the critical density i.e. raise the critical temperature, as implied by

equation 5.5. However in conjunction with this, the mean-field repulsion between

the atoms broadens their spatial distribution and hence reduces their central

density, causing a reduction in the critical temperature. For weak interactions,

the latter effect dominates the former, giving rise to a positive value of ∆Nc, or

equivalently a negative value of ∆Tc. Figure 5.1 illustrates these two competing

effects.

3

 

n
V(r)2.612

Figure 5.1: Opposing effects of interactions on the critical point of a Bose gas
in a harmonic potential V (r). Compared to an ideal gas (dotted blue line) with
the same Tc, repulsive interactions reduce the critical density, but also broaden the
density distribution (solid red line). Mean-field theory (dashed line) captures only
the latter effect, and predicts an increase of the critical atom number Nc at fixed
temperature T , equivalent to a decrease of Tc at fixed N .

The negative Tc shift due to the broadening of the spatial profile can be calculated

within mean-field theory. This calculation was carried out in [198] and yields

∆Tc

T
(id)
c

≈ −1.33
a

aho

N1/6 ≈ −3.426
a

λ0

(5.7)

where aho is the trap oscillator length aho =
√

~/mω̄. This prediction corresponds

to the dashed-line spatial profile in figure 5.1 and we note that this result neglects

finite-size effects as well as (by definition) the correlation effects mentioned above.

The dominance of the negative MF shift of Tc over the positive beyond-MF one

goes beyond the difference in numerical pre-factors in equations 5.5 and 5.7. In

contrast to the homogeneous case, at the condensation point in a non-uniform

system only the central region of the cloud is close to criticality. The effect of

critical correlations on Tc is therefore expected to be reduced by a factor∼ (a/λ0)3

compared to the uniform case, corresponding to the ratio of the volume of the
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critical region to that of the thermal cloud. The MF result of equation 5.7 should

therefore be exact at first order in a/λ0.

There have been several attempts to theoretically combine the effects of MF

repulsion and beyond-MF correlations on Tc for a harmonically trapped gas [247,

248, 249, 250, 251], but no consensus has yet been reached beyond the expectation

that the additional beyond-MF shift should be positive. Recent calculations, for

example, predict a logarithmic term of the form ln
(
a
λ0

)(
a
λ0

)2

in addition to the

quadratic term, such that the full functional form (neglecting finite-size effects)

is given by
∆Tc

T
(id)
c

≈ c1
a

λ0

+

(
c′2 + c′′2 ln

(
a

λ0

))(
a

λ0

)2

(5.8)

with c1 = −3.426032, c′2 = −32πζ(2)
3ζ(3)

= −45.856623 and c′′2 = −155 [249].

Table 5.2 summarizes the Tc-shift predictions discussed in the preceding sections.

Uniform Harmonic

Ideal T
(id)
c =

(
n

ζ(3/2)

)3/2
2π~2
kBm

T
(id)
c = ~ω

kB

(
N
ζ(3)

)1/3

Interacting

MF
∆Tc

T
(id)
c

= 0
∆Tc

T
(id)
c

= −3.426
a

λ0

bMF

∆Tc

T
(id)
c

≈ 1.3an1/3

≈ 1.8
a

λ0

∆Tc

T
(id)
c

= c1
a

λ0

+

(
c′2 ln

a

λ0

+ c′′2

)(
a

λ0

)2

+O

(
a

λ0

)3

Table 5.2: Summary of the predicted critical temperatures and their interaction-
induced shifts in uniform and harmonic trapping potentials.
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5.2 Previous experimental studies

Previous measurements of the Tc shift have been performed for a/λ0 ranging

from 0.007 [252] to 0.024 [253]. The results of these measurements are consistent

with the MF prediction of equation 5.7 within experimental errors and could not

discern the effects of critical correlations. Below is a brief summary of a selection

of these studies and their findings.

1. Ref. [209] reports the results of early experiments carried out using 87Rb in

a trap with (ωx, ωy, ωz) = 2π × (132, 132, 373)Hz. The condensed fraction

as a function of temperature is compared to the ideal-gas prediction
N0

N
= 1− ( T

T
(id)
c

)3, including finite-size effects, as shown in figure 5.2.

Figure 5.2: Condensed-fraction against reduced temperature, reproduced from
[209]. Condensation occurs with 40,000 atoms at a temperature of 280nK.

A least-squares fit to the form N0

N
= 1−( T

Tc
)3 yields a value of Tc = 0.94(5)T 0

c

for the critical temperature, with finite-size effects estimated to account for

a shift of 3% from the ideal-gas value and interaction effects speculated to

account for the remaining shift.

2. Ref. [210] reports on experiments using 87Rb in a cigar-shaped trap with

(ωr, ωz) = 2π × (11.7, 33.1)Hz. Condensation occurs with N ≈ 1.5 × 106

and T ≈ 430nK and the results are compared to the ideal-gas prediction,

as shown in figure 5.3.

Although a least-squares fit to the condensed fraction plot yielded Tc =

(0.96±0.15)T 0
c for the critical temperature, in these experiments the thermal

and condensed atom numbers are determined from gaussian fits to both

components and the overall accuracy in the atom number is estimated at

20%. The accuracy in the determination of the temperature is estimated at
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Figure 5.3: Condensed-fraction against reduced temperature, reproduced from
[210].

15% and therefore no clear departure of the critical temperature from its

ideal-gas value is observed within experimental error.

3. Ref. [253] reports on a systematic study of the interaction shift in a 87Rb

gas. The interaction parameter is varied by changing the atom number

loaded into the trap and the critical number is obtained by monitoring the

appearance of a condensed component.

Figure 5.4: Tc-shift as a function of number, Tc(N), as reported in [253].

Ideal-gas behaviour is excluded by over two standard deviations (see figure

5.4) and the data agree with the mean-field prediction of equation 5.7.

Writing their results in the form ∆Tc/T
0
c = αN1/6, the authors obtain

α = −0.009(1)+0.002
−0.001, compared to the prediction α ≈ −0.007 of equation

5.7. Within experimental sensitivity, no evidence is seen for the predicted

condensate-enhancing effects of beyond-mean-field critical fluctuations.

The authors of [253] conclude that observation of beyond-mean-field effects

should be made possible by: (1) improved thermometry, with an accuracy of

1% or better, (2) enhancement of the interaction shift, possibly through use
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of a Feshbach resonance and (3) local measurement of the critical density

near the trap centre, which should be most sensitive to critical fluctuations.

The results reported in this chapter are precisely an implementation of the

first two of these measures. Furthermore, a separate study performed in

our group [254] has used measurements of the finite condensed fraction

already present at the mean-field critical point to confirm the ‘condensate-

boosting’ effect of critical fluctuations and the expected scaling behaviour of

the condensed fraction with interaction strength. This study also provides

a useful connection to the uniform-potential Tc-shift via the local density

approximation (LDA). However, discussion of these results is beyond the

scope of this thesis.

4. Ref. [252] reports on experiments performing in-situ phase-contrast imaging

of trapped 23Na clouds. Best agreement with the measured spatial profiles

is provided by the Popov mean-field approximation (see section 4.5). The

chemical potential extracted using this model is used to obtain an estimate

of ∆Tc/T
0
c = −0.027±0.001 for the critical temperature, in good agreement

with the prediction of equation 5.7, ∆Tc/T
0
c ≈ −0.025.

5. The interaction shift in a uniform system was measured in a dilute sample

of 4He adsorbed in a porous glass (vycor) [240]. The gas parameter an1/3

was varied over the range 0.03→ 0.075 (corresponding to a/λ0 = 0.021→
0.054) by changing the density of adsorbed 4He and Tc was measured via

the onset of superfluidity in the sample (see figure 5.5).

Figure 5.5: Critical temperature Tc as a function of density for the 4H-vycor
system. The onset of superfluidity is measured by observing the change in period
of a torsional oscillator to which the sample is mounted. Figure from [240].

These measurements confirmed the positive sign of the shift, in qualitative
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agreement with equation 5.5, but found a coefficient of 5.1 ± 0.9 for the

linear coefficient, closer to the value calculated in [233, 234].

Figure 5.6 shows the mean-field prediction of equation 5.7, together with the

experimental results reported in [209, 253] and [252].
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Figure 5.6: The mean-field prediction of equation 5.7 is shown (blue line), together
with the measurements of [252] (green triangle), [209] (red point) and [253] (interval
between dashed lines)

5.3 Experimental method

The experimental procedure we use to probe the critical point in our interacting

gas is almost identical to that used in the non-saturation studies described in

chapter 4. These measurements likewise begin with a partially-condensed 39K gas,

prepared in its |F,mF〉 = |1, 1〉 internal state in our crossed optical dipole trap.

For the experiments described in this chapter, the geometric mean of the trap

frequencies is in the range ω̄ = 2π×(75→ 85)Hz corresponding to measurements

with atom numbers N ≈ (2→ 8)× 105.

The critical point is measured by fixing the optical trap depth and allowing the

total atom number to decay towards Nc via inelastic processes. Here too we

rely on elastic collisions to redistribute atoms between the condensed and ther-

mal components and on the fixed trap depth to maintain an essentially constant

temperature (see figure 4.3).

We explore the range 0.001 < a/λ0 < 0.06 by exploiting the 402.5G Feshbach

resonance in the |1, 1〉 state. The cloud is initially prepared at a scattering length

of a = 135a0, as described in chapter 3, which is then adjusted to the desired
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value by ramping the Feshbach field to the appropriate strength over a few ms.

The cloud is held for a variable hold time before being released from the trap and

imaged after a 19ms time-of-flight. The total hold time required for the atom

number to drop below Nc depends on the specific value of a being measured and

the temperature, ranging between 5→ 18s.

In addition to extending the a/λ0 range over previous experiments, use of the

Feshbach resonance allows us to eliminate several key sources of statistical and

systematic errors, greatly improving both the precision and accuracy of our ∆Tc

measurements. More specifically, turning off interactions during TOF allows us

to detect smaller condensed fractions, and performing a low-a reference measure-

ment for each interaction strength allows us to isolate the interaction shift and

eliminate all a-independent systematic errors (see below).

1) Removal of interactions during time-of-flight

In order to home in on the critical point we use the Feshbach resonance to turn off

the interactions during time-of-flight. To accomplish this we quickly (in . 2ms)

ramp the Feshbach field to the zero-crossing at 350G immediately after release of

the gas from the trap. This minimizes the expansion of small condensates during

TOF and allows us to reliably detect condensed fractions as small as ∼ 10−3 (see

figure 5.7).

Figure 5.7: (a) An ab-
sorption image of a cloud
with 450 000 atoms and a
0.14 % condensed fraction.
We show an azimuthally av-
eraged cut through the col-
umn density for illustrative
purposes, while the full 2D
distribution is used for fit-
ting. The gas was prepared
at a large scattering length,
a = 274 a0, but the interac-
tions were turned off in TOF.

Once imaged, we determine small condensed numbers N0 by performing a direct

summation over the density distribution in the central part of the image, after
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subtracting a fit to the smooth thermal background. For N0 > 2000 this agrees

with a standard Thomas-Fermi fit, but is more reliable for smaller condensates.

2) Reference measurements at low a

For each measurement series at a given a and λ0, we concurrently take a reference

measurement with a different a, same ω̄ and very similar N , hence very similar

λ0. This is done by alternating experimental runs at the two different scattering

lengths. Specifically, for the reference point we choose a small a such that a/λ0 ≈
0.005. Measurements at this value of the interaction parameter are still taken

to be in thermal equilibrium, as discussed in section 5.5. With this procedure,

we thus directly access the small Tc shift due only to the difference in a/λ0,

and essentially eliminate all a-independent systematic errors that usually affect

absolute measurements of Tc(N, ω̄, a). These include uncertainties in the absolute

calibration of N and ω̄, as well as the additional Tc shifts due to finite-size effects

[46] and the small anharmonicity of the trapping potential [255]. Figures 5.8a

and 5.8b show the relationship between the condensed (N0) and thermal (NT)

atom number near the critical point and illustrate the differential measurement

for one of our experimental series.
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Figure 5.8: Determination of the critical point and differential interaction shift.
(a) Condensed (N0) versus thermal (NT) atom number for two concurrently taken
series with a = 56a0 (blue circles) and a = 274a0 (black squares). Note that all
points correspond to condensed fractions below 2%. The data is scaled to the
same temperature (T = 240nK) and shows the shift of the critical point in the
form ∆Nc(T ). The solid point corresponds to the image shown in figure 5.7. Solid
lines show the extrapolation to N0 = 0, necessary to accurately determine Nc. (b)

NT is plotted versus N
2/5
0 for the same data as in (a), showing more clearly the

extrapolation procedure.
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Systematic errors

In general, interactions increase the kinetic energy of atoms during TOF, resulting

in an a-dependent error in the measured temperature which is not cancelled out by

our differential measurements. To minimize this error we extract the temperature

from a fit to only the wings of the thermal distribution, excluding the central

thermal radius from the fit as described in section 3.15 (see also [186, 185]). The

removal of interactions during TOF using the Feshbach resonance also serves

to reduce this error, but the reduction of a is gradual over ≈ 2ms. We have

measured the difference between the (apparent) temperatures with and ‘without’

interactions during TOF to be approximately linear in a/λ0, and about 4% for

a = 400a0 and λ0 ≈ 104a0. By varying the time at which we turn off a, we

estimate our residual error to be 1−2% at a/λ0 = 0.04. This estimate is supported

by numerical simulations which reproduce the experiments quite well.

Additionally, interactions modify the initial in-trap momentum distribution. This

reduces the apparent T due to the positive chemical potential preferentially en-

hancing the population of low-energy states. We numerically estimate this effect

to also be approximately linear in a/λ0, and about 1− 2% at a/λ0 = 0.04. For-

tuitously, the in-trap and in-TOF effects partially cancel, resulting in a net error

in ∆Tc/T
(id)
c of at most ±1 % at a/λ0 = 0.04.

5.4 Extracting the Tc shift

Extrapolating to find Nc

The critical temperature of an experimental series is found by measuring the

temperature at the critical point, namely when Ntot = Nc = N(N0 → 0). In

order to precisely locate Nc, it is therefore essential to carefully extrapolate NT

to the N0 → 0 limit in order to accurately determine Nc. As can be seen in figure

5.8a, the rise of N0 with NT is not simply vertical due to the non-saturation of

the thermal component in a partially condensed gas (c.f. chapter 4). Since our

measurements take place at small N0, we perform the extrapolation using the

Hartree-Fock non-saturation prediction described in section 4.6

NT = Nc + SHFN
2/5
0 (5.9)

with the non-saturation slope SHF(T, ω̄, a) calculated with no free parameters



5.4 Extracting the Tc shift 165

using equations 4.33 and 4.34. This extrapolation is shown in figure 5.8b. The

shot-to-shot temperature fluctuations near Nc are at the 1% level, while the T

drift over the entire series is < 10%. This drift is analytically compensated,

as described in chapter 4, by applying the mean-field scaling, which amounts

to plotting NT(Tc/T )3 against N
2/5
0 (Tc/T ), as is done for the data presented in

chapter 4.

Calculation of ∆Tc

The Tc shift for each series is obtained by comparing the measured value of Tc

with that obtained from its corresponding low-a reference series. If the two series

possessed identical Nc values, ∆Tc would simply be given by the difference in

their respective transition temperatures. In order to correct for the small (few

%) difference in Nc, we apply the ideal-gas scaling Tc ∝ N1/3 to the reference

series temperature. i.e. T ref∗
c = T ref

c (Nm
c /N

ref
c )1/3, where (N ref

c , T ref
c ) and (Nm

c , T
m
c )

are the critical number and temperature for the reference and ‘measured’ series,

respectively. In plain words, T ref∗
c is what the critical temperature of the reference

series would be if it had the same value of Nc as the measured series. The final

expression for the Tc shift is therefore given by

∆Tc

T
(id)
c

=
Tm
c − T

(id)
c

T
(id)
c (Nm

c )
(5.10)

where the value of T
(id)
c is obtained from T ref∗

c using the mean-field shift, i.e.

T
(id)
c = T ref∗

c /(1− 3.426 a
λ0

). We shift our results to ensure that our a/λ0 ≈ 0.005

reference point lies on the mean-field prediction, although assuming the ideal-

gas value of T
(id)
c for a/λ0 = 0.005 would not affect our results within error

bars. Figure 5.9 summarizes our equilibrium measurements of the interaction

shift ∆Tc/T
(id)
c . We took data with a range of atom numbers, N ≈ (2→ 8)× 105

(corresponding to T
(id)
c ≈ 180−330 nK), in order to verify that our results depend

only on the interaction parameter a/λ0.

The dashed blue line shows the MF result of equation 5.7, which agrees very

well with the data for a/λ0 . 0.01. For larger a/λ0 we observe a clear deviation

from this prediction. All data points are fitted well by a second-order polyno-

mial (solid red line), ∆Tc/T
(id)
c = b1(a/λ0) + b2(a/λ0)2, with b1 = −3.5 ± 0.3

and b2 = 46 ± 5. Calibration of the y-axis is done by ensuring that this fit ex-

trapolates to ∆Tc/T
(id)
c = 0 for a/λ0 → 0. Within our error bars, the predicted
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Figure 5.9: Interaction shift of the critical temperature. Data points were taken
with N ≈ 2× 105 (blue circles), 4× 105 (black squares), and 8× 105 (red triangles)

atoms. The dashed line is the mean-field result ∆Tc/T
(id)
c = −3.426 a/λ0. The solid

line shows a second-order polynomial fit to the data (see text). Vertical error bars
show standard statistical errors. Horizontal error bars reflect the 0.1 G uncertainty
in the position of the Feshbach resonance.

small logarithmic corrections of equation 5.8 are not discernible. The value of

b1 is in excellent agreement with the MF prediction of −3.426 [198]. The value

of b2 strongly excludes zero, and its sign is consistent with the expected effect

of beyond-MF critical correlations. These measurements provide the first clear

observation of beyond-MF effects on the transition temperature of a harmonically

trapped gas.

5.5 Non-equilibrium measurements

In this section we discuss the requirements on the relationship between the hold

time in the CDT, thold, the elastic scattering rate, γel and the relevant atom-

number decay time τ for the measurements of Tc to faithfully reflect the equilib-

rium properties of the gas. In general, a system with continuous dissipation can

only be ‘close to’ thermodynamic equilibrium. For an atomic gas, the proximity

to equilibrium depends on the dimensionless parameter γelτ , which measures the

relative rates of elastic and inelastic processes.
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Following [192], we make use of the following expressions in calculating γel:

γel = n(0)vth
σ0

2

n(0) = Nω̄3

(
m

2πkBT

)3/2

vth =

√
8kBT

πm
(5.11)

where n(0) is the central density, vth the mean thermal velocity and σ0 the scat-

tering cross-section. In practice the elastic scattering rate γel required for equi-

librium measurements also depends on the precision with which measurements

are made. In these experiments, we measure Nc to roughly 1%, and so we require

that the gas continuously re-equilibrate on a timescale τ corresponding to only

a 1% atom loss. This implies a value of γel roughly 100 times higher than would

be naively assumed by taking the 1/e lifetime as the relevant timescale for decay

of the cloud.

Equilibration is usually considered to take about 3 collisions per particle [191].

With this in mind, for all the measurements shown in figure 5.9 we made sure that

the number of collisions occurring on the timescale τ fulfilled γelτ > 5. All our

data also satisfy the condition thold > τ > 1/ω̄, necessary for global equilibrium

to be established.

It is interesting to observe what happens if we violate these stringent equilibrium

criteria. In figure 5.10a we show measurements with N ≈ 4 × 105 atoms (λ0 ≈
104 a0), extending beyond the equilibrium region shown in figure 5.9.

We still show only measurements satisfying thold > τ > 1/ω̄ and γelthold > 5,

so that there is nominally enough time for global equilibrium to be established.

However if γelτ is not large enough, the elastic collisions cannot ‘keep up’ with

the continuously present dissipation. The resulting non-equilibrium effects can

thus not be eliminated by simply extending thold, but are an intrinsic property of

the system. In figure 5.10b we plot γelτ , based on γel calculated from equation

5.11 and τ measured near the critical point for each series. Individually, γel ≈
0.7− 1000 s−1 and τ ≈ 2ms− 1s vary vastly as a function of a (γel increasing and

τ decreasing), but the breakdown of equilibrium appears to occur at very similar

values of γelτ in the low- and high-a limit.

Since non-equilibrium phenomena necessarily depend on additional factors such
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Figure 5.10: Non-equilibrium effects. (a) ∆Tc/T
(id)
c for N ≈ 4 × 105 atoms is

determined following the procedure which assumes equilibrium (as in figure 5.8). At
both very low and very high a the apparent Tc deviates from the equilibrium curve.
(b) Equilibrium criteria: γelτ (solid squares) is the number of elastic collisions per
particle during 1% atom-loss; γel/ω̄ = 1 (open circles) marks the onset of the
hydrodynamic regime.

as the initial conditions, we do not expect our quantitative results to be universal

and instead discuss only the qualitative trends in our data. In the small-a limit we

observe a smooth rapid rise of the apparent Tc above the equilibrium curve (and

hence above T
(id)
c for a→ 0). We can qualitatively understand this effect within

a simple picture. In this regime, losses are most likely dominated by inelastic

collisions with background particles (‘one-body processes’) which equally affect

N0 and NT. The net effect of the equilibrating elastic collisions would therefore

be to transfer atoms from the condensate to the thermal cloud. However the

dissipation rate is too high compared to γel, and so N0 remains non-zero even

after the total atom number drops below the equilibrium critical value Nc (i.e.

the measured Tc is above the equilibrium value). Although strictly speaking T

is not defined out of equilibrium, the absolute value of the observed effect is

sufficiently small that an equilibrium distribution function fits the data very well

and provides a good measure of the energy content of the cloud.
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Our measurements in the large-a limit suggest that the initial breakdown of equi-

librium again results in condensates surviving above the equilibrium Tc. However

the physics in this regime is much richer, with several potentially competing ef-

fects requiring further investigation. For example, three-body decay affects N0

and NT differently, the thermal component is far from saturation (chapter 4), and

the gas also enters the hydrodynamic regime, γel/ω̄ > 1 (see figure 5.10(b).

5.6 Conclusions

In conclusion, we have performed high-precision studies of the effects of inter-

actions on Bose-Einstein condensation of a trapped atomic gas. In the regime

where equilibrium measurements are possible, our most important observation is

the clear deviation from mean-field behaviour for sufficiently strong interactions.

The additional positive shift of the critical temperature is a clear signature of

the condensation-enhancing effect of critical fluctuations. These measurements

should provide motivation and guidance for further theoretical studies of this

difficult problem. We have also studied non-equilibrium condensation phenom-

ena, for both very weak and very strong interactions. Further study of these

effects should prove useful for understanding condensation in intrinsically out-of-

equilibrium systems, such as polariton gases.

The interplay between trap geometry and interaction strength is also a promising

direction for future research on both the shift in the critical point and the out-of-

equilibrium behaviour of the system. Indeed, preparations are already underway

in our group for generation of a two-dimensional trapping potential for exploring

the effects of reduced-dimensionality on the thermodynamic behaviour of our

gases. Preliminary designs and tests of the setup for generating these potentials

optically are described in appendices C and F.





6
Summary and Outlook

“What goes around may come around, but it never

ends up exactly the same place, you ever notice? Like

a record on a turntable, all it takes is one groove’s

difference and the universe can be on into a whole

’nother song.”

Thomas Pynchon, Inherent Vice

It is my hope that this thesis has served two main purposes. The first was to

provide relevant and useful information regarding the design and construction of

an apparatus for reliable production of ultracold rubidium and potassium gases.

During the design stage, we explicitly endeavoured to assemble an apparatus that

was flexible, versatile and simple, while compromising as little on performance

as possible. Plentiful optical access, the implementation of both magnetic and

optical trapping potentials, the inclusion of fermionic 40K sources, a reliable and

straightforward transport mechanism and an abundance of coils for production

of custom magnetic field configurations, should all contribute to the ability of

this setup to serve as a platform for many successful experiments in the future. I

hope that other students, both within our group and out, find this record of our

experiences to be a helpful resource in their own studies.

171
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We have used this system to produce condensed clouds of both 39K and 87Rb -

the second group in the world to do so. A conveniently-located, broad Feshbach

resonance in the ground state of 39K makes this species one of the most attrac-

tive for systematic studies into the effects of interactions on the thermodynamic

behaviour of cold gases. The second purpose of this thesis was the description

of two experiments, carried out using condensed clouds of 39K and fundamen-

tally reliant on this precise control over the atoms’ interaction strength. The

first of these experiments scrutinized Einstein’s original saturation picture as the

driving mechanism behind BEC. The deviation from this idealized picture due

to interatomic interactions was found to be very strong, and could only be cap-

tured quantitatively by a mean-field treatment in the regime of small condensate

number. In the larger-condensate regime a more heuristic approach was used to

quantify the lack of saturation and by extrapolation of our results to the non-

interacting limit we were able to recover complete saturation in the ideal-gas limit.

This provided the first direct experimental evidence for excited-state saturation

as the basic mechanism behind BEC, confirming the purely statistical nature of

this phase-transition as originally described by Einstein.

The second experiment described in this thesis made use of similar experimental

techniques to those developed in the saturation study to perform high-precision

measurements of the shift in the critical temperature induced by interparticle

interactions. In addition to confirming the predictions of mean-field theory in the

regime of weak interactions, we have provided the first observation of the effects

of interparticle correlations, arising in the vicinity of the transition, on the critical

temperature. These beyond-mean field corrections are in qualitative agreement

with recent theoretical predictions and our measurements should serve as a useful

guide for further theoretical efforts. As part of this study, we have also observed

some intrinsic non-equilibrium behaviour of our trapped clouds in the regimes of

both very weak and very strong interactions.

The technique shared by both of these experiments is their reliance on the gradual

decay in atom number resulting from inelastic processes and background colli-

sions. Trap-loss measurements have long been used to study collisional dynamics

of trapped clouds in magneto-optical traps [256, 257, 258, 259, 260, 55] as well

as of condensed clouds [261]. To these studies the current work adds the prob-

ing of thermodynamic quantities such as the condensed fraction and the critical

temperature. There can be no doubt that many more insights are waiting to be

extracted from such conceptually straightforward yet subtle experiments.
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Many open questions remain, predominantly related to exploring the effects of

interparticle interactions on the behaviour of these systems under different cir-

cumstances. These include, but are not limited to

• Confinement in potentials of reduced dimensionality.

• Confinement in periodic potentials.

• In-situ measurements of thermodynamic quantities.

• Novel interaction regimes, such as very strong interactions and long-range

interaction potentials.

• Confinement in the presence of impurities and/or disorder.

• Trapping of Bose-Bose and Bose-Fermi mixtures in the presence of tuneable

interspecies and intraspecies interactions.

• Manipulation using artificial optically-generated gauge potentials.

All in all, degenerate quantum gases promise to yield many physical insights and

applications for years to come by providing an almost ideal test-bed in which

to investigate many open questions in condensed matter physics, materials sci-

ence, fundamental quantum mechanics and even cosmology [262, 263], as well

as applications in fields ranging from metrology to quantum communication and

quantum information processing.





Appendices

175





A
87Rb and 39K properties

General and optical properties of 87Rb and 39K. The 87Rb data is taken from

[110] and the 39K data from [111], both of which contain references to the original

data sources.

Property 87Rb value 39K value

Natural abundance 27.83(2) % 93.2581(44) %
Mass 86.909180520(15) amu 38.96370668(20) amu

Nuclear spin (I) 3/2 3/2
Atomic number (Z) 37 19

Melting point 39.31 ℃ 63.65 ℃(336.8 K)
Boiling point 688 ℃ 774.0 ℃(1047.15 K)

Vapor pressure at 293 K 4.0× 10−7 mbar 1.3× 10−8mbar
Density at 293 K 1.53 g/cm3 0.862 g/cm3

Table A.1: General properties of 87Rb and 39K. Values taken from references [110]
and [111], respectively.
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Property symbol D1-line value D2-line value

Frequency ν 377.1074635(4) THz 384.2304844685(62) THz
Wavelength λ 794.9788509(8) nm 780.241209686(13) nm

Wavenumber k/2π 12578.950985(13) cm−1 12816.54938993(21) cm−1

Lifetime τ 27.70(4) ns 26.24(4) ns
Natural linewidth Γ/2π 5.746(8) MHz 6.065(9) MHz

Recoil velocity vrec 0.57754 cm/s 0.58845 cm/s
Recoil temperature Trec 348.66 nK 361.96 nK

Doppler temperature TD 137 µK 146 µK
Saturation intensity Is 1.669(2)mW/cm2

Table A.2: D1- andD2-line optical properties of 87Rb. Values taken from reference
[110].

Property symbol D1-line value D2-line value

Frequency ν 389.286058716(62) THz 391.01617003(12) THz
Wavelength λ 770.108385049(123) nm 766.700921822(24) nm

Wavenumber k/2π 12985.1851928(21) cm−1 13042.8954964(4) cm−1

Lifetime τ 26.37(5) ns 26.37(5) ns
Natural linewidth Γ/2π 6.03(1) MHz 6.035(11) MHz

Recoil velocity vrec 1.329825973(7) cm/s 1.335736144(7) cm/s
Recoil temperature Trec 0.41436702 µK 0.41805837 µK

Doppler temperature TD 145 µK 145 µK
Saturation intensity Is 1.75mW/cm2

Table A.3: D1- and D2-line optical properties of 39K. Values taken from reference
[111].



179

5 DATA TABLES 24

306.246(11) MHz

510.410(19) MHz

816.656(30) MHz

F = 2

F = 1

F = 2

F = 1

2.563 005 979 089 11(4) GHz

4.271 676 631 815 19(6) GHz

6.834 682 610 904 29(9) GHz

g   = 1/2
(0.70 MHz/G)

F

g   = -1/2
(-0.70 MHz/G)

F

g   = 1/6
(0.23 MHz/G)

F

g   = -1/6
(0.23 MHz/G)

F

5  P1/2
2

5  S1/2
2

794.978 850 9(8) nm
 377.107 463 5(4) THz
12 578.950 985(13) cm
1.559 590 99(6) eV

-1
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sublevels.
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Figure A.1: 87Rb D-line hyperfine structure. The Landé gF-factors for each level
are also given, with the corresponding Zeeman splittings between adjacent magnetic
sublevels. Values taken from reference [110]
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Figure A.2: 39K D-line hyperfine structure. The Landé gF-factors for each level
are also given, with the corresponding Zeeman splittings between adjacent magnetic
sublevels. Values taken from reference [111].



B
A compact system for the rapid

production of 87Rb BECs

During the first year of our work, in parallel with the design and assembly of the

laser, imaging and control systems, we constructed a single-chamber apparatus

intended to serve as a platform on which to test the performance of these various

components . Initially intended to be used solely for the production of a MOT,

it was realised soon after this goal was achieved that condensation of 87Rb in this

setup was a possibility. On the 24th Feb. 2009, we observed our first 87Rb BEC in

this system. Condensation was achieved by evaporative cooling in an optically-

plugged quadrupole trap. This type of hybrid trap, utilizing both optical and

magnetic forces, was used in the first observation of BEC in the MIT group in 1995

[24] and has since been used successfully in several other groups [264, 265, 266].

Several other compact machines for producing degenerate Bose gases have been

demonstrated [267, 268, 269] and a commercial venture [270] has even been estab-

lished to capitalize on the simplicity, reduced cost and versatility of such systems.
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182 A compact system for the rapid production of 87Rb BECs

Below is a brief description of the setup and the sequence used in order to produce

ultracold clouds in this relatively simple machine.

B.1 Vacuum chamber

The compact vacuum chamber consists of a circular quartz cell1, fitted with seven

1” AR-coated quartz windows around its perimeter and two 2” AR-coated quartz

windows on its top and bottom. This cell is connected to a stainless steel chamber

via a 15cm long glass tube of 15mm diameter. The vacuum chamber is continu-

ously pumped by a 45ls−1 ion pump 2 and can be connected to a turbo pump3

via an all-metal right-angle valve4 during bakeout. A Bayard-Alpert ionization

gauge5 is fitted to the chamber for monitoring the pressure and a source module

consisting of four atom sources6 mounted to an eight-pin electrical feedthrough7

is also fitted. Figure B.1 shows a top-view schematic of the chamber.

PR
O
D
U
C
ED
  B
Y  
AN
  A
U
TO
D
ES
K  
ED
U
C
A
TI
O
N
AL
  P
R
O
D
U
C
T

PR
O
D
U
C
ED
  B
Y  
AN
  A
U
TO
D
ES
K  
ED
U
C
A
TI
O
N
AL
  P
R
O
D
U
C
T

PRODUCED  BY  AN  AUTODESK  EDUCATIONAL  PRODUCT

PRODUCED  BY  AN  AUTODESK  EDUCATIONAL  PRODUCT

1!

3!

4!

5!

6! 7!
8!

2!

Imaging!

MOT!

Figure B.1: Schematic of the small-system vacuum chamber. (1) Ion pump, (2)
viewport for imaging/pumping/plug beams, (3) turbo pump, (4) right-angle valve,
(5) atom source module, (6) ionization gauge and (7) glass MOT cell. Also shown
are the MOT and imaging beams, the quadrupole coils and the CCD camera used
for absorption imaging (8).

Figure B.2 shows images of the bare assembled system, the various magnetic coils

1 Triad Technology, Inc.
2 œrlikon Leybold IZ50
3 œrlikon Leybold TURBOVAC TW 70 H
4 VAT, Series 540 DN40
5 Varian, Inc., UHV-24p
6 Alvatec, 2 × AS-3-K-30-V and 2 × AS-3-Rb-50-V
7 Kurt J. Lesker, EFT0084033
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Figure B.2: (a) The bare system after assembly and bakeout, (b) the magnetic
coils mounted around the cell and (c) a top view showing the directions of the
MOT and imaging beams together with the optical cmponents.
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mounted about the glass cell and a top view of the apparatus indicating the beam

paths of the MOT and imaging light.

B.1.1 Bakeout

Bakeout of the chamber proceeded in a similar manner to that of the main cham-

ber, described in section 3.2.9, with the chamber being wrapped in heater tape

and the applied heating current controlled using variacs. Temepratures at vari-

ous locations were monitored using thermocouples and logged using a LabView

VI. Figure B.3 shows an overview of the system pressure (black line), as well

as the temperatures measured at various locations, during the first six days of

the bakeout procedure. Clearly visible are the pressure spikes that accompany

the raising of the temperature, followed by a gradual drop in the pressure - at

constant temperature - as the released impurities are pumped from the system.
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Figure B.3: Overview of the first six days of the bakeout process. The pressure as
measured by the ionization gauge is shown in black and the temperatures at various
locations along the chamber are shown by the coloured data points. Temperature
rises are accompanied by pressure rises and subsequent decays as released impurities
are removed by the pump.

B.2 Lasers and coils

The cooling, repump, pumping and imaging beams for cooling 87Rb in this cham-

ber are generated by the same laser system used for the main experiment and

described in section 3.3. Similarly to the main experiment, once on the vacuum

table, the cooling and repump beams are spatially overlapped before being split
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into the six beams required for the 3D MOT. Figure B.4 shows the home-made

fiberport cluster assembled for this purpose using a custom-machined baseplate

together with commercially available miniature beamsplitter-cubes and mounts,

half-wave plates, polarizers, fibre couplers, photodiodes and ‘tweaker’ plates for

precision alignment1. One input is used for the cooling beam and the second for

the repumper. Initial alignment and testing of the fiberport cluster was carried

out by a visiting student, Mehdi Lallouache.

Input 1!

Output 2!

Input 2!

O
utput 1!

Output 3!

O
ut

pu
t 4
!

O
ut

pu
t 5
!

Output 6! Photodiode!Ph
ot

od
io

de
!

λ/2!λ/2!

λ/2!

λ/2!

λ/2!

λ/2!

a)! b)!

Figure B.4: (a) Image and (b) schematic of the home-made fiberport cluster for
overlap and splitting of the 87Rb cooling and repump beams.

Each beam is collimated to a diameter of approximately 1” and passed through

a quarter-wave plate to produce the appropriate circular polarization. Two 2”

mirrors are used to steer the beams through the cell. A total of 84mW of cooling

light is divided equally between the six beams, with 10mW of repump light being

divided less evenly due to imperfections in the fiberport cluster. In addition

a diode-pumped solid-state (DPSS) 532nm laser2, capable of outputting 18W

of CW power, is used to provide a beam to be used for optical plugging of the

quadrupole magnetic trap. The quadrupole magnetic field used both for operation

of the MOT and for magnetic trapping is generated by a pair of coils mounted in

anti-Helmholtz configuration above and below the cell. Each coil consists of 36

turns (6× 6) of insulated copper tubing (OD: 4mm, ID: 2.8mm), encapsulated in

an epoxy resin and wound with an inner diameter of 53mm, an outer diameter

of 103mm and a height of 25mm. Cooling water is circulated within the copper

tubing. The coils are mounted 30mm apart and are powered by a power supply3

1 Thorlabs, Inc., Fiber Optomechanics range
2 Coherent, Inc. Verdi V18
3 Delta Electronika SM15-200D
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capable of providing up to 200A at 15.5V, corresponding to a field gradient of

400Gcm−1 along the strong (vertical) axis. Three smaller coil pairs mounted

in approximately Helmholtz configuration, provide compensation fields and a

single auxiliary coil is used to provide a guide field directed along the glass tube

connecting the cell to the rest of the chamber.

B.3 Optical Plug

Optical plugging relies on the use of a repulsive (blue-detuned) laser beam to

repel atoms from the central region of a quadrupole magnetic trap in which they

are susceptible to Majorana spin flips. An advantage of this method is that the

linearity of the quadrupole trap is preserved and hence evaporative cooling is

more efficient than in a harmonic potential. This is crucial in our case, since

the single-chamber design already limits the lifetime of our trapped clouds to

several seconds. Our plug light is generated by a pumped Ti:Sapph laser1, whose

frequency is tuned in the range νplug = 740 → 770nm. The beam is sent to

the vacuum chamber in a polarization maintaining fibre, and upon exiting from

the fibre is focussed at the centre of the glass cell by a single, f = 150mm, 2”

achromatic doublet2. The beam path is shown in figure B.5.

Figure B.5: Diagram of the system showing the propagation path of the plug
beam.

As can be seen, the plug propagates along the weak quadrupole axis and hence

breaks the rotational symmetry of the trap. The beam waist is chosen to be

larger than the estimated hole region in order to avoid sensitivity to alignment

1 Coherent, Inc., MBR-110
2 Thorlabs, AC508-150-B-ML
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instabilities, while still providing a high enough barrier to incident atoms to keep

as many as possible away from the hole region. In our setup, we use a plug

waist of wplug ≈ 27µm and a peak barrier height of up to 750µK. The addition

of the optical plug potential to the magnetic quadrupole field creates an overall

potential containing two minima on either side of the plug beam, as illustrated

in figure B.6.
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Figure B.6: Optically plugged quadrupole potential plotted against distance from
the trap centre, for a strong-axis field gradient of 200Gcm−1. The plug barrier
shown is for a waist of 27µm and a peak height of 725µK.

Assuming propagation along the y-direction and neglecting the Rayleigh range

of zR = πw2
0/λ ≈ 4mm for our 27µm waist as well as gravity, the total potential

is given by

UTOT = Umag + Uplug

= µBgFmFB
′
√
x2 + y2 + 4z2 + U0e

−(x2+z2)/w2
plug (B.1)

where B′ is the magnetic field gradient and wplug is the plug waist. Approximating

the potential minimum as an anisotropic oscillator, the trapping frequencies are

given by [24]

ωx = ωy

√
4x2

0

w2
plug

− 1, ωy =

√
µBgFmFB′

2mx0

, ωz =
√

3ωx (B.2)

where x0 is the distance between the trap centre and the trap minimum. We have
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found that displacing the plug slightly to one side of the trap centre yields larger

condensate numbers due to the formation of a single trap minimum, similarly to

the results reported in [265].

B.3.1 Light-Induced Atomic Disorption (LIAD)

Use of a single-chamber system conflicts with the opposing pressure requirements

required for the MOT and evaporation stages, as discussed in section 3.2. To ad-

dress this limitation, the technique of Light-Induced Atomic Desorption (LIAD)

was pursued with the aim of obtaining a higher pressure of the target species dur-

ing MOT loading and a sharp decrease in the pressure prior to the start of evapo-

ration. Photon-stimulated desorption was first demonstrated by A. Gozzini et al.

in 1993 [271] with the name light-induced atomic desorption being given to the

phenomenon a year later [272]. LIAD makes use of incoherent short-wavelength

(UV) light to desorb atoms from cell walls, analogously to the photoelectric effect

for electrons. This increases the vapour pressure in the cell and can hence yield

larger MOT numbers. Re-adsorption of atoms once the light is extinguished then

lowers the pressure and hence increases the lifetime of the trapped atoms.

In recent years a number of groups have made use of this technique in cold-atom

experiments in order to achieve larger, longer-lived and faster loading MOTs

[273, 274, 275, 276, 277, 278, 279, 280, 281]. These experiments have explored the

wavelength and intensity dependence of the desorption rate, as well as the effects

of different adsorbing substrates, coatings and atomic species on the desorption

dynamics. Figure B.7 shows our UV source and the layout of its control circuit.
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Figure B.7: (a) UV source mounted on a copper heatsink fitted with a fan and
thermistor1. (b) Control circuit for the UV source and fan. A relay2allows TTL
switching of the light, while a FET3is used to turn off the source in the event of
overheating (T > 70℃).
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The source4 we use in our setup dissipates 18W of power and radiates 1250mW of

power with a central wavelength of 374nm (FWHM: 12nm). It is clamped using

thermally conducting paste to a 40x40x15mm finned copper heatsink fitted with

a cooling fan5. A thermistor6 is mounted in close proximity to the UV source and

is connected to a safety circuit in order to ensure the source is turned off in the

event of overheating (T > 70℃).

Somewhat disappointingly, we do not see the full benefits of LIAD in our system.

This may be due to the material from which our cell is made or the nature of

the AR coating on its viewports, although the exact reason remains unknown.

We have found however, that extended illumination with the source (≥30mins)

allows us to double the final MOT size and therefore the source is now employed

as an alternative mechanism to firing the conventional atom sources, which can

impair the immediate functionality of the system.

Interestingly, when testing the effect of the UV source on our main 39K-87Rb

system MOT chamber, we noticed a reduction in the MOT size of approximately

50% over ∼ 3s when the UV was turned on. Turning the UV off caused the MOT

to start growing immediately, reaching its former size after ∼15s. At the time this

effect was attributed to the release of impurity atoms from the chamber walls.

However, similar observations reported by a group at the National University of

Singapore [282] were attributed to a different cause. Their MOT diminished in

size only when the UV source was directed at the trapping region, and actually

grew in size when the source was directed at a cell wall away from the MOT

region. They therefore suspected that the depletion was due to the ionization

of neutral 87Rb from the excited 5P3/2 state to singly charged 87Rb, a transition

requiring radiation at 484nm or shorter.

B.4 Performance

The RF radiation required for evaporative cooling in the optically plugged trap

is provided by a small 4-turn coil placed near the vertical cell window and driven

1 EPCOS, B59901D0060A040
2 Tyco Electronics, Axicom IM 23
3 Toshiba, 2SK3869
4 Enfis, UNO Tag (UVA)
5 BiSonic, SP401012M, 12V, 0.09A
6 EPCOS, B59901D0060A040
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by a function generator1 via an RF amplifier2 outputting up to 2W. Figure B.8

shows sample images taken during alignment of the plug beam with respect to

the 87Rb cloud, following an evaporation sweep from roughly 15MHz to 1MHz.

Figure B.8: Alignment of the optical plug. Images taken during the alignment
process show the enhancement of atom number resulting from correct central align-
ment of the plug. In these images, the plug beam is left on during the short, 4ms,
time-of-flight.

A typical experimental sequence proceeds as follows:

1. A several-second MOT stage is followed by 2.5ms of optical molasses and a

20µs optical pumping stage to transfer atoms into the |2, 2〉 state.

2. The polarized sample is then magnetically captured by abruptly turning on

the quadrupole field with a gradient of 64Gcm−1, which is then ramped up

to 200Gcm−1 over the following 500ms.

3. At this point the plug beam is ramped up to expel atoms from the trap

centre.

4. There follows a 300ms ‘settling’ hold in the quadrupole trap during which

a 10MHz RF knife is applied. A first evaporation stage is then carried out,

ramping the RF linearly from 10MHz to 2MHz over 3s in the 200Gcm−1

trap.

1 Agilent 33250A
2 Delta RF Inc., LA2-1-525-30
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5. In order to reduce trap loss due to three-body collisions and scattering

from the plug beam, we then decompress the quadrupole field to 80Gcm−1

in 200ms.

6. Following decompression the evaporation sweep is resumed, commencing

from a lower frequency of 1.4MHz and sweeping logarithmically to the de-

sired final frequency in 0.5s.

Using this protocol, we have been able to obtain condensates containing over 105

atoms. Figure B.9 shows a trapped cloud imaged at various stages during the

evaporation sweep. The two distinct potential minima are clearly visible. Figure

B.10 shows a bimodal fit to a partially condensed (28%) cloud, prepared as

described above. Figure B.11 shows a sequence of images taken at 1ms intervals

in the range 3-12ms after release from the trap.

Figure B.9: Evaporation sequence in the plugged quadrupole trap. Two distinct
minima are clearly visible and further evaporation will result in population of only
one well due to slight asymmetries in the overall potential.
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Figure B.10: Bimodal fit to a partially-condensed 87Rb cloud. Fit carried out
according to the triple-pass procedure described in section 3.15. This example
possesses a condensed fraction of N0/N ≈ 28% and a temperature of T ≈ 500nK,
as obtained from a fit to the thermal wings.

Further details can be found in the first-year reports of Stuart Moulder, Robert

Campbell, Igor Gotlibovych and Tobias Schmidutz.
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Figure B.11: Atoms in freefall. After evaporation to a trap depth of 145kHz a
sequence of images was captured with the time-of-flight varied in 1ms intervals in
the range 3-12ms.



C
Using Spatial Light Modulators

for versatile creation of optical

potentials

Manipulation of atoms for performing novel and high-precision experiments relies

on our ability to generate the desired static or dynamic potential landscapes. As

discussed in this thesis, optical trapping of neutral particles is a widely-used

technique which has enabled confinement and manipulation of large numbers

of particles as well as single atoms. The most common optical trap geometry

is that produced by a Gaussian laser mode which provides an approximately

harmonic trapping potential, as utilized in the experiments described in this

thesis (see section 3.10). Periodic optical lattices with tuneable parameters can

also be formed by interference of non-copropagating beams [135]. More recently,

diffusive optical elements have been used to project optical speckle potentials

onto trapped clouds for studies into the effects of disordered potentials [283, 67,

193
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284, 285, 142]. In general, it is clear that the ability to produce a diverse range of

optical potentials can provide access to many interesting experimental regimes.

C.1 Spatial Light Modulators

An emerging tool for creating highly-customisable optical potentials is the Spa-

tial Light Modulator (SLM). The operating principle of an SLM is the ability

to control (modulate) the phase and/or amplitude at different points within the

wavefront of an incident beam. Knowing the subsequent propagation path of

this modulated field enables production of a tailored field configuration at the

location of the sample simply by a suitable choice of phase and amplitude mod-

ulation in the SLM plane. The modulation itself is accomplished by reflecting or

transmitting the beam through an array of independently-controlled pixels. The

most common SLM implementations are based on liquid crystal displays (LCD),

although some purely intensity-modulating SLMs rely on a digital micromirror

device (DMD) consisting of an array of deformable micromirrors to deflect light

from the desired pixel and hence control the intensity attenuation. In an LCD-

based SLM, phase control is provided by tuning the birefringence of each pixel,

while intensity control is accomplished by rotating the beam polarization at each

pixel in conjunction with polarizing filters, similarly to a conventional LCD pro-

jector. The SLM is controlled from a PC via a conventional video (DVI) interface.

After the SLM, a lens is typically used to generate a far-field image of the beam

at the location of the atomic cloud.

The nature of this device naturally makes it much more flexible than the use of

static optical elements, such as phaseplates and masks, for the creation of arbi-

trary potentials and in addition opens up the possibility of dynamic manipulation

of the atoms by real-time changes to the phase-pattern displayed on the SLM.

The rate at which the pattern can be updated varies from device to device based

on the method used to induce the phase-shift, but for the most common types

(LCD) is on the order of 12Hz. SLMs based on ferroelectric liquid crystals can

achieve frame rates on the order of 1kHz.

In order to explore the feasibility of using an SLM for generating optical po-

tentials in future experiments, we conducted a trial using a commercial SLM1

loaned from its manufacturer. Below, we briefly describe the experimental setup

used for testing the SLM, as well as the three classes of optical potential whose

1 Hamamatsu Photonics, LCOS-SLM X10468-04
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production was trialled during these initial experiments with the SLM. These

were the Laguerre-Gauss (LG) modes, the variably spaced sheets (‘lids’) and the

arbitrarily-shaped potential.

C.2 Experimental setup

The setup used for testing of our SLM is shown in figure C.1. After emerging from

a single-mode polarization-maintaining fibre1, the 532nm beam is collimated to a

1/e2-diameter of ≈ 6mm by an f = 45mm lens2 and reflected from two steering

mirrors before being reflected from the SLM surface, passing through a 200mm

lens3 and impinging on a CCD camera4. The final lens is located 200mm from

both the SLM and the camera and all reflection angles are kept to a minimum.

Figure C.1: SLM trial setup. Shown are the fibre output collimator (bottom left),
steering mirrors, SLM head, Fourier lens and CCD camera. The light is derived
from our 532nm diode-pumped solid-state (DPSS) laser.

Phase patterns, also known as kinoforms, are sent to the device in the form of

a 600 × 800 array of 8-bit values (0 → 255), corresponding to a phase shift of

approximately 0 → 2π at the desired wavelength5. The field incident on the

SLM acquires this phase shift and is therefore multiplied by the factor, P (x, y) =

1 Thorlabs, PM460-HP
2 Thorlabs, AC254-045-A-ML
3 Thorlabs, LA1708-A
4 Thorlabs, DCC1545M CMOS
5 In practice the precise pixel value corresponding to a 2π phase shift is found empirically.
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eiφ(x,y), where φ(x, y) is the imprinted phase pattern, i.e.

E(r, zSLM) =

incident︷ ︸︸ ︷
E(r, 0) eiφ(x,y)︸ ︷︷ ︸

imprinted

(SLM plane) (C.1)

The field then passes through the so-called Fourier lens and is focussed in its focal

plane. In order to find the final form of the field in the Fourier lens focal plane,

we make use of the following:

1. Propagation of the Fourier transform of the field, Ẽ, from z0 to z is accom-

plished by multiplication with a propagation phase factor:

Ẽ(ξ, z) = Ẽ(ξ, z0)eik(z−z0)
√

1−(λξ)2 (C.2)

2. Within the thin-lens approximation, the effect of an ideal lens of focal length

f is simply to multiply the field by the phase factor,

E(r, z)→ E(r, z)e−ikr
2/2f . (C.3)

3. The field in the lens focal plane can be found using the Fresnel diffraction

formula:

E(r′, z) =
eikz

iλz
eikr

′2/2z

∫
E(r, 0)eikr

2/2ze−ikr·r
′/z d2r (C.4)

Using the above we find that the field at the focal plane after the lens, z = f , is

related, up to a global phase factor, to the field at a distance d before the lens,

z = −d by

E(r′, f) =
ei
kr′2
2f

(1− d
f

)

iλf

∫
E(r,−d) eikr·r

′/f d2r (C.5)

In our experimental setup we have zSLM = −d = −f . The phase factor preceding

the above integral therefore vanishes, reducing the expression to a regular Fourier

transform.

E(r′, f) =
1

iλf

∫
E(r, zSLM) eikr·r

′/f d2r (focal plane) (C.6)

with E(r, zSLM) the field of equation C.1, including the imprinted phase pattern.
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C.3 Trial 1: Laguerre-Gauss modes

A uniform trapping potential can be generated by replacing the harmonic confine-

ment provided by a Gaussian beam with a potential consisting of a flat bottom

with sharp outer walls. Laguerre-Gauss (LG) modes are the solutions to the

paraxial Helmholtz equation1 in the case of cylindrical symmetry, and such a

flat-bottomed potential can be provided by the annular LGl 6=0
p=0 modes, where l

and p are the azimuthal and radial mode indices, respectively. LGl
0 beams can

be generated by imprinting a phase winding of the form

φ(x, y) = lθ (C.7)

onto an incident Gaussian beam, where θ is the polar angle in the xy plane and

l is an integer, often called the charge or winding number. Beams generated

using this method have attracted much attention recently since their photons

each possess L = l~ of orbital angular momentum which can be transferred to

the particles with which they interact [286, 287, 288]. Therefore, in addition

to enabling studies of gases confined in uniform potentials, the ability to easily

and dynamically change the charge of the LG beams also lends itself to use in

experiments studying the rotational properties of BECs such as vortex nucleation

[289] and superfluidity measurements (see [290] and subsection C.7 below).

Figure C.2 shows some example kinoforms used for imprinting such phase wind-

ings, together with their resulting intensity profiles, which can be obtained as

follows: For an incident Gaussian beam of wavelength λ and waist ω, passing

through the ‘phaseplate’ of equation C.7, the field at the focus of a subsequent

Fourier lens of focal length f is given by equation C.6 using cylindrical coordinates

E(r′, θ′) =

√
I0

λf

∫
drdθ r eikr·r

′/fe−r
2/ω2

eilθ (C.8)

where the field immediately before the phaseplate is taken to be E(r, θ) =√
I0e
−r2/ω2

. The Fourier term can be decomposed in terms of Bessel functions of

the first kind, Jm(z), using the identity

eiz cosφ =
∞∑

m=−∞

imJm (z) e−imφ (C.9)

1 Helmholtz equation: ∇2ψ + k2ψ = 0. The paraxial (small-angle) approximation neglects
second-order variations of amplitude along direction of propagation.
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Figure C.2: Radial cross-section through the intensity distribution for LGl0 beams
of winding number l = 1, 2, 3, 6, 10. Shown on the right are the phase patterns used
for the l = 1, 6 and 10 beams.

and hence

eikr·r
′/f = eikrr

′ cos(θ−θ′)/f =
∞∑

m=−∞

imJm(krr′/f)e−im(θ−θ′) (C.10)

Inserting equation C.10 into equation C.8 and noting that only the term for which

l = m will survive the integral over θ, results in the following expression for the

field

E(r′, θ′) = il
√
I0 e

ilθ′
∫ ∞

0

du u Jl(2ur
′/ω′) e−u

2

(C.11)

where the substitution u = r/ω has been made and ω′ = λf/πω is the waist

at the lens focus. The intensity is obtained as I(r′, θ′) = |E(r′, θ′)|2. Near the

optical axis, for r′ � lω′, the Bessel function’s small-argument approximation

Jl(2ur
′/ω′) ∼ (ur′ω′)l/l! can be used to obtain

I(r′) ∝ Io

(
r′

ω′

)2l

for r′ � lω′ (C.12)

It can be shown [291] that for large radii, the intensity falls of as I(r′) ∝
√
I0l

2r′−4,

with the radial dependence, I(r′) ∝ 1/r′4, independent of the charge, l. The l2-
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dependence is responsible for transferring large fractions of the beam power into

the wings and explains the large difference between the peak heights in figure

C.2. Figure C.3 shows LG beams recorded using the setup of figure C.1 using

the winding numbers l = 1, 3, 5, 11, 13, 15, 17, 19, 25, 30, 35, 45. We note that the

images of figure C.3 were taken after correcting for aberrations in the optical path

using the Shack-Hartmann algorithm [292] and applying an annular aperture to

the SLM pattern which suppresses the fringes normally present outside the main

LG ring.

Figure C.3: Measured profiles of beams with l =
1, 3, 5, 11, 13, 15, 17, 19, 25, 30, 35, 45 (top-left to bottom-right). The field of
view in each image is d = 0.78× 0.78mm (i.e. 150× 150 pixels). The colorscale of
each image is scaled to the image’s maximal and minimal values.
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C.4 Trial 2: 2D confinement and the 2D-3D

crossover

Phase gradients are used to produce a uniform translation of the field in the

image plane, as can be easily understood by observing that insertion of the factor

P (x, y) = e±ipx into equation C.6 is equivalent to a straightforward translation

by ±p in the Fourier domain. These gradients can of course be superposed to

translate the field in both directions, as illustrated in figure C.4.

Figure C.4: ‘Translation gradients’ are used to uniformly translate the field pro-
file in the image plane. Horizontal (left) gradients are superposed with vertical
gradients (middle) to translate diagonally. The higher the gradient, the larger the
translation.

Such gradients are commonly used in order to separate the modulated light

diffracted from the SLM from the light undergoing specular reflection from its

surface, which contributes an unwanted signal in the image plane. However, with

only a slight modification, similar gradients can also be used to provide a useful

potential for exploring the 2D-3D crossover regime. Figure C.5 shows a phase pat-

tern consisting of opposing linear gradients centred on the horizontal axis. This

phase pattern produces an intensity profile consisting of two vertically-spaced

thin ‘light sheets’ (aka lids), whose spacing grows with the phase gradient.
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Figure C.5: ‘Splitting gradients’ can be used to produce two thin light sheets
for exploring the transition between the 2D and 3D confinement regimes. In this
example, the gradient is p = 5π/y0
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The formation of this profile can be intuitively understood by considering illu-

mination of the SLM by a plane wave. The phase pattern of figure C.5 has the

form

P (x, y) =

e−ipy if y ∈ [−y0, 0]

eipy if y ∈ [0, y0]
(C.13)

where y0 is the distance from the horizontal axis to the top of the SLM. The

amplitude in the image plane therefore takes the form

E(x′, y′) ∝
∫ 0

−y0
ei(−p+k)ydy +

∫ y0

0

ei(p+k)ydy (C.14)

∝
[
ei(−p+k)y

i(−p+ k)

]0

−y0
+

[
ei(p+k)y

i(p+ k)

]y0
0

(C.15)

∝ e−i(−p+k)
y0
2

[
sinc((−p+ k)

y0

2
)
]

+ ei(p+k)
y0
2

[
sinc((p+ k)

y0

2
)
]

(C.16)

i.e. a sum of two sinc functions. Assuming a Gaussian incident beam would lead

to a convolution of a gaussian with each of the sinc peaks. For large enough y0

and p, the cross term arising from taking the modulus of the amplitude can be

neglected, producing two separated peaks.

The possibility of dynamically tightening the confinement into the 2D regime,

may also be useful for gathering as high a number of atoms as possible into

the trap, compared with current loading procedures, which simply turn on the

final two-dimensional potential in its final form, incurring the loss of those atoms

beyond its reach. We intend to explore this technique in future experiments.

Figure C.6 shows a series of intensity profiles, taken with varying values of the

‘splitting gradient’.

C.5 Trial 3: Arbitrary potentials

It is clear that the ability to generate arbitrarily-shaped optical potentials would

make available a hugely versatile toolbox for performing a wide range of experi-

ments in micron-scale custom-designed systems. Several algorithms exist for per-

forming the phase-retrieval task required for producing arbitrary field profiles, the
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Figure C.6: Production of variably-spaced light sheets for studies of the 2D-3D
crossover. The splitting gradient, p, was measured in terms of the number of SLM
pixels per 2π phase shift. From top-left to bottom-right the images correspond to
p = 200, 190, ..., 10. Note that in these images, a cylindrical lens profile has also
been added to the SLM in order to obtain the elongated aspect ratio shown.

most well-known of which is the Gerchberg-Saxton (GS) algorithm [293], which

has been widely documented, implemented and investigated. The GS algorithm

is an iterative algorithm for finding the phase pattern required to transform one

intensity distribution into another, when both intensity distributions are known.

Although the GS algorithm is in wide use, is has been shown that its conver-

gence is imperfect and often results in the production of numerous optical vor-

tices in the resulting intensity profile. Following our initial use of the GS al-

gorithm for making arbitrary profiles (see figure C.7), a project student (Alex

Gaunt) conducted a theoretical, numerical and experimental investigation into

these limitations and developed a method based on an extension of the mixed-

region-amplitude-freedom (MRAF) algorithm of [294, 295, 296] for producing

much smoother arbitrary potentials from which these optical vortices were also
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practically eliminated. In addition, two further measures where implemented to

improved the profile smoothness:

1. The Shack-Hartmann aberration correction algorithm [292] was used in or-

der to compensate for aberrations present in the SLM panel and optical

path.

2. A feedback algorithm was implemented to empirically compensate for irreg-

ularities in the final image by proportionally adjusting the target intensity

profile fed to the phase-retrieval algorithm in response to the image recorded

by the CCD camera.

Figure C.7 shows a rudimentary example of the improvements afforded by these

techniques. For further details, see Alex Gaunt’s project report [297].

b)! c)! d)! e)!

GS (no feedback)! GS (w/feedback)! OMRAF (no feedback)! OMRAF (w/feedback)!Target image!

a)!

Figure C.7: Comparison of the Gerchberg-Saxton algorithm and the OMRAF
algorithm developed by Alex Gaunt for producing smooth arbitrary potentials and
removing optical vortices. The field of view in each image is approximately 1.6 ×
1.6mm. (a) Target image and images produced by (b) GS algorithm with no
feedback, (c) GS algorithm with feedback, (d) OMRAF algorithm without feedback
and (e) OMRAF algorithm with feedback.

Further applications involving the dynamic manipulation of optical potentials

include mechanical stirring of condensed clouds [296] and the implementation of

a lens with dynamically varying focal length for translation or compression of

optical dipole potentials1.

C.6 Home-made SLM

We have also briefly explored the possibility of constructing a home-made SLM

using the LCD panel and control electronics found inside a simple commercial

1 Note: the phase profile of a lens of focal length f is a quadratic: φ(r) = −kr2/2f
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projector1. The main motivation for this was the prospect of achieving compara-

ble results to a commercial phase-only SLM for a roughly two-order-of-magnitude

magnitude reduction in cost. Commercial LCD panels have already been use as

intensity modulators to control the intensity of an array of optical dipole traps

for manipulating a cold 85Rb sample [298]. Figure C.8 shows the bare LCD panel

connected to the control board, after the safety circuit controlling the projector’s

high-power light source was bypassed.

Figure C.8: (a) Home-made SLM using LCD panel and control electronics from
commercial projector. (b) close-up of LCD panel between crossed polarizers show-
ing the displayed (l = 3) phase pattern.

The main drawbacks of this approach, aside from the lack of robustness/rigidity

of the setup, are:

• The transmissive nature of the device significantly reduces the diffraction

efficiency. The commercial SLM operates reflectively and incorporates a

dielectric mirror to maximize reflection over the desired wavelength range.

• The spaces between the panel’s pixels give rise to a modulating envelope

to the entire image and degrade its smoothness. The commercial SLM

utilizes an LCOS panel, which operates in reflection and whose pixels are

intrinsically much more closely spaced, reducing the effects of pixellation.

• Use of twisted nematic liquid crystals as opposed to parallel liquid crystals.

Twisted nematics rotate the beam’s polarization which has an unknown

effect of the quality of the final image, relying as it does on interference of the

beams emerging from each pixel. The commercial SLM utilizes a parallel-

aligned nematic LCD which leaves the beam’s polarization unaffected.

1 Saville Audio Visual, TMX-1700XL. Cost: £150.



C.7 Current status and future plans 205

C.7 Current status and future plans

We are currently making use of a commercial SLM in experiments investigating

the proliferation and non-equilibrium behaviour of vortices nucleated in a 87Rb

condensate using the LGl
0 beams described above. The techniques under develop-

ment may also find application in direct measurements of the superfluid fraction

of ultracold gases, as proposed in [290].

In addition, plans exist for a series of experiments on uniformly-confined clouds in

both two and three dimensions, including the crossover between the two regimes.

Finally, another attempt at in-house construction of an SLM is also underway.

We hope to improve on our previous efforts by making use of a commercially

available LCOS panel instead of the conventional LCD display mentioned above

in order to improve efficiency and reduce pixelation effects.





D
MOT and science cell properties

• Figure D.1 shows top and side views of the 316LN stainless steel MOT

cell, as well a diagram of the quartz science cell with the dimensions in

millimetres.

• Figure D.2 shows the single-surface reflectance spectrum at normal (0°)
incidence (solid line).

• Figure D.3 shows the single-surface reflectance spectrum at 45° incidence.

The upper, long-dashed line is the spectrum for s-polarized light and the

lower, short-dashed line is the spectrum for p-polarized light. The solid line

shows the mean for the two polarizations.

• Figure D.4 shows the transmittance spectrum at 45° incidence for an entire

cell, with only the external surfaces coated. The upper, short-dashed line

is the spectrum for p-polarized light and the lower, long-dashed line is the

spectrum for s-polarized light. The solid line shows the mean for the two

polarizations.

207
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Figure D.1: Top (a) and side view (b) views of the MOT cell and a diagram of
the science cell (c), including relevant dimensions (in mm).

Figure D.2: Science cell BBAR coating. Single-surface reflectance spectrum at
normal (0°) incidence (solid line). The dashed line shows an alternative coating
offered by the manufacturer. Data provided by the manufacturer, Starna Scientific
Ltd.
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Figure D.3: Science cell BBAR coating. Single-surface reflectance spectrum at
normal 45° incidence. Upper (long-dashed) line shows spectrum for s-polarized
light and lower (short-dashed) line shows spectrum for p-polarized light. Solid line
shows mean of both polarizations. Data provided by the manufacturer, Starna
Scientific Ltd.
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Figure D.4: Science cell BBAR coating. Transmittance through entire science
cell at 45° incidence. Only external surfaces are coated. Upper (short-dashed) line
shows spectrum for p-polarized light and lower (long-dashed) line shows spectrum
for s-polarized light. Solid line shows mean of both polarizations.Data provided by
the manufacturer, Starna Scientific Ltd.





E
Magnetic fields produced by

current-carrying coils

E.1 Fields from circular coils

The axial and radial field components generated by loop of current I with radius

R, displaced from the origin by a distance D (as illustrated in figure E.1a) are:

Bz =
µI

2π

1√
(R + ρ)2 + (z −D)2

[
K(k2) +

R2 − ρ2 − (z −D)2

(R− ρ)2 + (z −D)2
E(k2)

]

Bρ =
µI

2π

1

ρ

z −D√
(R + ρ)2 + (z −D)2

[
−K(k2) +

R2 + ρ2 − (z −D)2

(R− ρ)2 + (z −D)2
E(k2)

]
(E.1)

where

k2 =
4Rρ

(R + ρ)2 + (z −D)2
(E.2)
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and K(k2) and E(k2) are the complete elliptic integrals of the first and second

kind, respectively1.
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ẑ

Bz (!, z)

B! (!, z)

D

R

!
z

(!, z)

I
D

D

R

x̂

ŷ
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Figure E.1: Single-loop and coil-pair configuration. Figure (a) shows a thin loop
of radius R and current I, mounted a distance D from the origin. Figure (b) shows
a coil pair mounted a distance d = 2D apart and operated in Helmholtz (black
arrows) and Anti-Helmholtz (red arrows) configuration.

E.1.1 Near-origin approximation for circular current loops

Near the origin (ρ = 0, z = 0), the power series expansion for the field due to a

single coil (see figure E.1a) to second order in ρ and z is:

Bz = µI
1

2

R2

(D2 +R2)3/2
+ µI

3

2

DR2

(D2 +R2)5/2︸ ︷︷ ︸
axial field gradient

z + µI
3

4

R2(4D2 −R2)

(D2 +R2)7/2︸ ︷︷ ︸
axial curvature

(z2 − ρ2/2) + ...

Bρ = −µI 3

4

DR2

(D2 +R2)5/2︸ ︷︷ ︸
radial field gradient

ρ− µI 3

4

R2(4D2 −R2)

(D2 +R2)7/2
zρ+ ... (E.3)

E.1.2 Circular coil pairs

Figure E.1b shows a coil pair, operated in Helmholtz (black arrows) or Anti-

Helmholtz (red arrows) configuration. The coils are a distance d = 2D apart.

1 These functions are implemented in Mathematica as EllipticK[m] and EllipticE[m].
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• For the Helmholtz configuration, the equations for the field near the origin

to third order are

Bz = µI
R2

(D2 +R2)3/2
+ µI

3

2

R2(4D2 −R2)

(D2 +R2)7/2
(z2 − ρ2/2) + ...

Bρ = −µI 3

2

R2(4D2 −R2)

(D2 +R2)7/2
zρ+ ... (E.4)

The next terms in this expansion are only fourth order in z and ρ. In the

ideal Helmholtz case, when R = 2D (i.e. coil spacing = coil radius), the

second term in Bz and the first term in Bρ vanish, leaving the uniform field

Bz = µI
8

5
√

5R
+ ... (E.5)

Bρ = 0 + ... (E.6)

• For the Anti-Helmholtz configuration, the equations for the field near the

origin to third order are

Bz = µI · 3 · DR2

(D2 +R2)5/2
z + µI

15

24

R2(4D2 − 3R2)

(D2 +R2)9/2
(4z2 − 6ρ2z) + ...

Bρ = −µI 3

2

DR2

(D2 +R2)5/2
ρ+ µI

15

16

R2(4D2 − 3R2)

(D2 +R2)9/2
(ρ3 − 4ρz4) + ... (E.7)

In this case, when R = 2D the field gradient is maximized and is given by

dBz

dz
= µI

48

25
√

5R2
= 2

dBρ

dρ
(E.8)

It is also worth noting that the third order terms in both directions in both

directions vanish when R =
√

4/3D.

Approximating the coil pairs in our experiments as stacked single pairs of in-

creasing radius and separation we obtain a good estimate to the total field by

summing the individual contribution of each pair according to the above equa-

tions using the appropriate spacings and radii. This was used in the design of

our quadrupole, MOT compensation and Feshbach coils.
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E.2 Fields from rectangular coils

Below are the expressions for the magnetic field produced by a thin rectangular

loop of current, I lying in the xy plane1. These were used in the design of the coil

mount holding the rectangular Helmholtz coils mounted around the science cell

and described in section 3.11. Figure E.2 shows the geometry under consideration.

Figure E.2: Geometry for a single rectangular loop of wire with side dimensions
2× a1 by 2× b1 lying in the x-y plane. The field is evaluated at point P (x, y, z).

The field is obtained from the vector potential using

Bx = −∂Ay
∂z

By =
∂Ax
∂z

Bz =
∂Ay
∂x
− ∂Ax

∂y
(E.9)

The components of the vector potential are

Ax =
µ0I

4π
ln

[
(r1 + a1 + x)

(r2 − a1 + x)
· (r3 − a1 + x)

(r4 + a1 + x)

]

Ay =
µ0I

4π
ln

[
(r2 + b1 + y)

(r3 − b1 + y)
· (r4 − b1 + y)

(r1 + b1 + y)

]
(E.10)

where r1, r2, r3 and r4 are the distances from the corners of the loop to the point

P (x, y, z) at which the field will be calculated (see figure E.2). The components

1 Results reproduced from [299]
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of the field at P (x, y, z) are then

Bx =
µ0I

4π

4∑
α=1

[
(−1)α+1z

rα[rα + dα]

]
(E.11)

By =
µ0I

4π

4∑
α=1

[
(−1)α+1z

rα[rα + (−1)α+1Cα]

]
(E.12)

Bz =
µ0I

4π

4∑
α=1

[
(−1)αdα

rα[rα + (−1)αCα]
− Cα
rα[rα + dα]

]
(E.13)

where

C1 = −C4 = a1 + x d1 = d2 = y + b1

C2 = −C3 = a1 − x d3 = d4 = y − b1 (E.14)

r1 =
√

(a1 + x)2 + (y + b1)2 + z2 r2 =
√

(a1 − x)2 + (y + b1)2 + z2

r3 =
√

(a1 − x)2 + (y − b1)2 + z2 r4 =
√

(a1 + x)2 + (y − b1)2 + z2 (E.15)

Figure E.3 shows a screenshot from the Mathematica notebook used to obtain

the total field and curvature of the rectangular Helmholtz coils used in our ex-

periment. The predictions of this simulation are in excellent agreement with the

measured field values reported in table 3.4.

Figure E.3: Mathematica notebook. Includes a diagram of the specified coils (top
left), a plot of the field contours in the y-z plane (top right) and Bz field profiles
along the y and z axes, with the other two coordinates equal to zero (bottom right
and left, respectively).





F
A tightly confining potential for

studies of two-dimensional Bose

gases

F.1 Introduction

A system’s dimensionality plays a crucial role in determining its properties and

the nature of its phase transitions. In general, ordered states are more robust in

higher dimensions, while the effects of thermal and quantum fluctuations tend to

destroy the ordering of the system in lower dimensions (see [300] and references

therein).

The case of two dimensions is especially interesting since it displays ‘marginal’

behaviour: Although, as described by the Mermin-Wagner theorem, thermal fluc-

tuations preclude true long-range order at any finite temperature in an infinite
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ideal system, superfluidity is still possible in an interacting infinite system at

finite temperature. The mechanism by which this superfluidity is established is

named the Berezinskii-Kosterlitz-Thouless (BKT) transition, after those who first

proposed its existence [301, 302].

In order to enter the 2D regime in the context of experiments on ultracold atoms

a highly-anisotropic trap is required, possessing one spatial direction that is far

more tightly-confining than the remaining two. The tightly-confining direction

is ‘frozen out’ when the energy spacing, ~ω, between the ground state and first

excited state is much larger than both kBT and the mean-field interaction energy

gn, where g is the coupling constant and n the particle density. Both of these

quantities are typically on the order of a few kHz.

Our ability to fine-tune the interaction strength in our 39K clouds opens the

way for interesting experiments on the interplay between interactions and di-

mensionality in this system. The interaction strength in the 2D regime can be

characterized by a dimensionless coupling constant, g̃, related to the 3D coupling

strength, g via

g =
~2

m
g̃ (F.1)

where m is the atomic mass. For a harmonically-confined gas, this can be re-

written as

g̃ =
√

8π
a

aho

(harmonic trap) (F.2)

where a is the scattering length and aho =
√

~/mω̄ is the oscillator length in the

tightly-confining direction. As an example, assuming a trap frequency of 4kHz

(see section F.3 below), the range of interaction strengths used in the experiments

reported in this thesis (a ≈ 40− 400a0), should allow us to span the interval g̃ =

0.04− 0.4. This compares to typical values of g̃ = 0.13 in the Paris experiments

[190, 303] and g̃ = 0.02 in the NIST experiments of [304].

Furthermore, using the holographic techniques described in appendix C, novel

geometries can be created for containing these two-dimensional ultracold clouds.

These include, but are not limited to, uniform trapping potentials and non-

simply-connected geometries such as toroidal traps. With these longer-term goals

in mind, preliminary work was carried out on generating an optical potential pos-

sessing tight confinement along a single direction for studying two-dimensional

clouds.

Several experimental methods have been employed in order to achieve 2D and
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quasi-2D confinement of trapped clouds:

• A single red-detuned gaussian beam was used in conjunction with a tightly-

focussing cylindrical lens to produce an attractive sheet trap. This was used

in the first production of a gas in the quasi-2D regime [305] as well as in

the experiments at NIST [304].

• Two interfering gaussian beams of wavelength λ, either perfectly counter-

propagating or with a small angle, θ between them, can be used to produce a

stack of adjacent 2D clouds separated by λ/2 or λ/(2 sin(θ/2)), respectively

[306, 307, 308, 309, 310, 311, 312].

• Atoms can be tightly-confined against an evanescent wave in close proximity

to a glass surface, with in-plane confinement being provided by an additional

optical trap or magnetic field gradient [313, 314].

• 2D confinement has also been implemented using rf-dressed magnetic traps

[315, 316, 317].

• Another technique involves the use of blue-detuned light in conjunction

with a phaseplate to produce a potential consisting of two repulsive sheets,

with the atoms confined in the dark plane and radial confinement provided

by an additional optical or magnetic potential[318, 319, 320]

We have chosen to implement the last of these schemes following recent encour-

aging results from the ENS group. The principle behind generating the potential

is identical to that described for spatial light modulators (SLMs) in appendix

C, with the SLM surface replaced by a static optical element. These plates are

made by spatially tailoring the thickness of an anti-reflection coating in order to

produce the desired phase shift at the design wavelength. Below we describe this

method in further detail and describe the results of our preliminary tests.

F.2 The 0-π phaseplate

The most convenient phase-pattern to produce a suitable tightly-confining po-

tential is the 0-π plate, consisting of a π phase-shift for Y < 0 and no phase shift

for Y > 0.

P (x, y) =

0 if y < 0

π if y > 0
(F.3)

This pattern produces a Hermite-Gaussian TEM01-like mode at the focus of the
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Fourier lens, which as usual is chosen to coincide with the position of the atoms.

Figure F.1 shows the phase pattern, resulting intensity profile and a comparison

to the unshifted Gaussian beam.
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Figure F.1: Generating a 2D potential using a 0−π phaseplate. (a) The imprinted
phase pattern, (b) the resulting intensity profile for a Gaussian input beam and
(c) cross-sections through the intensity profiles of the shifted and unshifted beams,
normalized to the peak intensity of the unshifted beam.

The field in the focal plane is given by (see equation C.6)

E(r′, f) =
1

iλf

∫ ∞
−∞

dx

(∫ ∞
0

dy −
∫ 0

−∞
dy

)
E(r, 0) eikr·r

′/f (F.4)

where r =
√
x2 + y2, f is the Fourier lens focal length, E(r, 0) is the Gaussian

field incident on the phaseplate and vertical centre of the phaseplate is at y = 0.

For a Gaussian input beam of power P and waists ωx, ωy

E(r, 0) =

√
2P

πωxωy
exp

(
−x

2

ω2
x

)
exp

(
− y

2

ω2
y

)
(F.5)

the integral of equation F.4 can be evaluated analytically to give

E(r′, f) =

√
2P

πω′xω
′
y

exp

(
−x

′2

ω′2x

)
exp

(
− y

′2

ω′2y

)
︸ ︷︷ ︸

Focussed Gaussian

erfi

(
y′

ω′y

)
︸ ︷︷ ︸
modulation

(F.6)

where ω′x,y = λf/πωx,y is the usual focussed Gaussian waist and the imaginary

error function, erfi(z), is related to the error function by erfi(z) = −ierf(iz),

with erf(z) = 2/
√
π
∫ z

0
exp(−t2)dt. This has the form of a focussed Gaussian

modulated by an error function and is shown in figure F.1c. Since the error
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function is an odd function, the intensity profile vanishes along y = 0. This

property is useful since it ensures the minimal photon scattering rate for the

atoms confined at the centre of the potential. This is also an advantage of using

blue- as opposed to red-detuned light. Furthermore, since blue-detuned light

can be focussed down to smaller waists, it also enables the production of more

tightly-confining traps than those using red-detuned light.

F.3 Estimating the trapping frequency and

depth

The trapping frequency near the intensity minimum can be estimated by using

the first-order approximation erfi(z) ≈ (2/
√
π)z + O(z3). Inserting this into the

expression for the intensity I(r′, f) = |E(r′, f)|2 and using expression 2.47 for the

potential produced by a far-detuned beam of detuning ∆

Udip (r) =
3πc2

2ω3
0

Γ

∆
I (r) (F.7)

gives a potential in the y-direction of the form Udip(y) = 1
2
mΩ2y2 with the trap-

ping frequency

Ω2 =
24c2ΓP

πmω3
0ω
′3
y ω
′
x∆

(F.8)

with Γ the natural linewidth, c the speed of light, m the atomic mass and ω0

the transition frequency. Plugging in the constants for 39K and 532nm light gives

Ω2 = αP/ω
′3
y ω
′
x, with α = 2.47× 10−11m4/Js. Hence for a beam with transverse

waist ω′x = 150µm and axial waist ω′y = 5µm, this results in a vertical trapping

frequency of Ωy = 2π × 5.77×
√
P kHz, with the beam power P given in Watts.

By setting dUdip/dy = 0, the distance, d, between the intensity maxima is found

to be dy = 1.8483ω′y. Using this result, the trap depth is found to be 0.37 times

the height of the unshifted Gaussian beam, i.e.

T =
∆U

kB

=
0.37 · αI0

kB

=
0.37 · α2P

πω′yω
′
xkB

(F.9)

with α ≈ 8.1 × 10−37 Jm2/W for both 39K and 87Rb. For the 5µm and 150µm

waists above, this amounts to a depth of roughly 18µK/W.
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F.4 Experimental setup

Figure F.2 shows a schematic of the experimental setup designed for use in our

apparatus. At the time of writing of this thesis this hardware has not yet been

installed on the system but has undergone preliminary testing to ensure its suit-

ability.

0-π "
phase-plate" cylindrical #

lens"

dichroic#
beamsplitter"

f=45mm"
imaging #
beam"

from fibre"

f=15.3mm"
collimator"

f=500mm"

Figure F.2: Illustration of our setup for producing the 2D confining potential.
In addition to being collimated and focussed to the desired waists, the trapping
beam passes through the 0-π phaseplate. The trapping beam is overlapped with
an imaging beam to aid alignment.

The main advantage of our configuration compared to those utilized by the Oxford

and Paris groups lies in its simplicity, consisting in essence of three lenses and

the 0-π phaseplate. By contrast, the Oxford setup contains seven lenses and the

phaseplate, while the Paris setup uses four lenses in addition to the phaseplate.

Our system is comparable in simplicity to that used by the Austin group, although

they also include an aperture in the optical path. In addition, due to spatial

limitations, the Paris group are constrained to use 2-inch optics along the entire

beam path to avoid clipping of their 7mm-diameter beam. We are fortunate

in being able to use a 45mm lens as the Fourier lens (compared to 100mm and

160mm for the Paris and Oxford groups, respectively) and hence achieve an equal

spot size with a beam of less than half the diameter, allowing us to use only 1-inch

optics. Figure F.3 shows a top and side view of the beam trajectory.

The trapping beam emerges from a polarization-maintaining (PM) single-mode

fibre1 and is collimated to a diameter of dinit =3mm by an f =15.3mm spherical

1 Timbercon, Inc., PM-4630-0420-0420-008M
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Figure F.3: Configuration for producing a tightly-confining optical potential. The
blue-detuned (532nm) beam is collimated, and then telescoped transversely to a
waist of ω′x=135µm while being focussed vertically to a waist of around ω′y=5µm.
On the way, it passes through the 0-π phaseplate which gives rise to the TEM01-like
mode in the focal plane.

lens1. It then passes through an f = 500mm cylindrical lens2 which focusses the

beam along the transverse (horizontal) direction and acts as the first lens of a

two-lens telescope. The beam then passes through the 0-π phaseplate, is reflected

from a dichroic beamsplitter3 and is focussed on the atoms by the f = 45mm

spherical Fourier lens4. This lens collimates the beam transversely to a 1/e2-

waist of ω′x=135µm5 and focusses the beam axially to a waist of ω′y=5µm. The

dichroic beamsplitter is chosen to reflect 532nm light while transmitting imaging

light for both 87Rb and 39K in order to facilitate alignment of the 2D trap with

the trapped atoms. These focal length values were chosen to provide sufficiently

tight confinement, while possessing a Rayleigh range which was large enough

to ensure a uniform potential (matching the CDT waist) without wasting beam

power unnecessarily. Care was taken to match the transverse waist to the axial

Rayleigh range in order to ensure a uniform aspect ratio for the trapped cloud.

The phaseplate is mounted in a rotation mount6 to allow for precise alignment of

the trapping plane and this rotation mount is mounted onto an XY translation

stage7 to enable precise alignment of the phaseplate centre line with the trapping

1 Thorlabs, C260TME-A
2 Thorlabs, LJ1144RM-A
3 Semrock Inc., LM01-552-25
4 Thorlabs, AC254-045-A-ML
5 Note: Changing the transverse waist simply requires changing the cylindrical lens focal

length.
6 Thorlabs, CRM1
7 Thorlabs, ST1XY-D
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beam. The f = 45mm Fourier lens is mounted within a precision translation

stage1 to allow translation of the focal plane along the beam propagation axis

for overlapping with the atoms. Since after passing through the phaseplate the

beam is no longer Gaussian and will not retain its form during propagation, we

endeavour to place the Fourier lens as close as possible to the phaseplate. To this

end, the phaseplate, dichroic beamsplitter and Fourier lens, with their respective

translation stages, are all mounted within a right-angle kinematic cage mount 2

to ensure their proximity and alignment. After passing through the science cell,

the trapping beam is separated from the imaging beam by another beamsplitter3

and sent to a beam dump in order to avoid damage to the camera sensor.

Updated design

Subsequent to the design of this system, the waist of the CDT was increased from

100µm to 140µm in order to increase the number of loaded atoms. Consequently,

the choice of focal lengths in the 2D setup should be modified in order to ensure

a uniform axial confinement in this new trap. Using an aspheric collimating lens

of focal length f1 = 15mm4, a cylindrical lens of focal length fx = 400mm5 and

keeping the f2 = 45mm Fourier lens results in an transverse waist of ω′x=165µm

(Rayleigh range: 16.3cm) and an axial waist of ω′y = 5.2µm (Rayleigh range:

160µm). This configuration maintains the good matching between the transverse

waist and the axial Rayleigh range, and in addition does not affect our ability

to use 1-inch optics throughout. The preliminary testing, described below, was

performed using the original design.

F.4.1 Preliminary trials

We initially tested the setup without the cylindrical lens and using a f2 = 1000mm

lens as the final Fourier lens in order to obtain a larger focussed waist for better

visibility. The camera was placed in the lens focal plane and images were recorded

with and without the phaseplate present. Figure F.4 shows cuts through these

images, together with the theoretical profile predicted for the same peak intensity.

1 Thorlabs, SM1Z
2 Thorlabs, KCB1
3 This beamsplitter is mounted in a gimbal mount (Thorlabs, KC45D)
4 Thorlabs, AL1815-A
5 Thorlabs, LJ1363RM-A or LJ1363L1-A
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Figure F.4: (a) Intensity profile at the focus of a 1000mm Fourier lens with
(red) and without (blue) the phaseplate in the beam path. (b) The profile with
the phaseplate, together with the theoretical prediction for a beam of equal peak
intensity.

We then made use of the custom ‘horizontal’ imaging objective described in sec-

tion 3.14 to provide a higher spatial resolution. The profile with and without

the phaseplate was recorded both in the presence and in the absence of the

fx = 500mm cylindrical lens, using the f2 = 45mm lens as the Fourier lens.

Figure F.5 shows the recorded profiles.

a) 

b) 

c) 

d) 

I/I
0 

Position (µm) 

e) 

-40 -30 -20 -10 0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

 

 

I/I
0

Position (µm)

Figure F.5: Focal-plane intensity profiles with, ((b) and (d)), and without, ((a)
and (c)), the phaseplate, in the presence, ((c) and (d)), and absence, ((a) and (b)),
of the cylindrical lens. A 45mm lens was used as the Fourier lens. The field of
view of the LHS images is 0.32 × 0.26mm (H×W) and that of the RHS images is
0.37 × 0.9mm (H×W). Figure (e) shows a vertical cut through the shifted (red)
and unshifted (blue) profiles in the focal plane. The measured 1/e2 gaussian waist
is 7.8µm.

The magnification of the imaging system in this configuration was found to be

M = 2.35 by focussing on a standard resolution chart (1951 USAF Resolution
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Test Target1). A Gaussian fit to the intensity profile yielded a waist in the

focal plane of 7.8µm, compared to the expected waist of 5.1µm. In order to

look into this discrepancy, we measured the profile of the beam after the first

f = 15.3mm collimating lens and found it to consist of only an approximate

Gaussian, superposed with a sharper peak of roughly half the width.

We suspected that this might be due to clipping of the beam by the small diameter

of the collimating lens (5mm) and in order to investigate this replaced it by a

large-diameter, f=20mm, asphere2. This noticeably improved the gaussianity of

the collimated beam and gave rise to a waist in the focal plane of the 45mm Fourier

lens of ω′y = 5.8µm, implying a collimated waist of roughly 1.3mm, compared to

the expected 1.97mm. This discrepancy may be due to an overestimate of the

fibre’s numerical aperture.

Loading procedure

The simplest protocol for transferring atoms into the 2D potential involves ramp-

ing up the 532nm beam in the presence of the CDT. In order to try and avoid

heating, the Paris group ramp up their ∼ 3.6kHz trap over 1.5s3, while the Oxford

group ramp up their ∼ 2.2kHz trap over roughly 300ms. After this ramp-up, it is

likely that some atoms will be trapped in the wings of the potential, within the

CDT but outside the 2D plane. These atoms can be made invisible by transfer-

ring them to a state that does not interact with the imaging beam. This can be

done using an RF sweep in the presence of a quadrupole magnetic field or, as in

the Paris group, by selectively illuminating these atoms with |F = 2〉 → |F ′ = 2〉
pumping light to transfer them into the |F = 1〉 hyperfine state, which is not

imaged. In order to transfer more atoms into the 2D potential, a preliminary

stage can be added to the sequence, wherein a red-detuned gaussian sheet is first

turned on in order to confine the atoms to a thin slab. The 2D potential can then

be ramped up in order to provide the final tight confinement. An elaboration

on this method was described in appendix C, whereby an SLM can be used to

gradually decrease the distance between two initially well-separated blue-detuned

sheets. See [291] and [321] for more details regarding the loading of atoms into

the 2D potential.

1 Thorlabs, R3L1S4P.
2 Thorlabs, AL2520-A.
3 This ramp-up is carried out in the presence of an RF evaporation field and a magnetic

TOP trap.
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[81] Einstein, A. Über die Entwicklung unserer Anschauungen über das Wesen

und die Konstitution der Strahlung (On the Development of Our Views

Concerning the Nature and Constitution of Radiation). Physikalische

Zeitschrift 10, 817–825 (1909).



Bibliography 233

[82] Frisch, O. R. Z. Phys. 86 (1933).
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Ph.D. thesis, Université Pierre et Marie Curie (2010). PhD thesis.

[292] Bowman, R. W., Wright, A. J. & Padgett, M. J. An SLM-based Shack-

Hartmann wavefront sensor for aberration correction in optical tweezers. J.

Opt. 12, 124004 (2010).

[293] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determi-

nation of the phase from image and diffraction plane pictures. Optik 35,

237 (1972).

[294] Aagedal, H., Schmid, M., Beth, T., Teiwes, S. & Wyrowski, F. Theory of

speckles in diffractive optics and its application to beam shaping. J. Mod.

Opt. 43, 1409–1421 (1996).

[295] Pasienski, M. & DeMarco, B. A high-accuracy algorithm for designing

arbitrary holographic atom traps. Optics Express 16 (2008).

[296] Bruce, G. D., Mayoh, J., Smirne, G., Torralbo-Campo, L. & Cassettari,

D. A smooth, holographically generated ring trap for the investigation of

superfluidity in ultracold atoms. Physica Scripta 2011, 014008 (2011).



Bibliography 249

[297] Gaunt, A. Coherent Optical Sculpting for Manipulating and Probing Ultra-

cold Atoms. Master’s thesis, University of Cambridge (2011).

[298] Kruse, J., Gierl, C., Schlosser, M. & Birkl, G. Reconfigurable site-selective

manipulation of atomic quantum systems in two-dimensional arrays of

dipole traps. Phys. Rev. A 81, 060308 (2010).

[299] Misakian, M. Equations for the magnetic field produced by one or more

rectangular loops of wire in the same plane. Journal of Research of the

National Institute of Standards and Technology 105, 557–564 (2000).

[300] Hadzibabic, Z. & Dalibard, J. Two-dimensional Bose fluids: An atomic

physics perspective. In Kaiser, R. & Wiersma, D. (eds.) Nano optics and

atomics: transport of light and matter waves, vol. CLXXIII of Proceedings of

the International School of Physics Enrico Fermi, 2009 (IOS Press, 2010).

[301] Berezinskii, V. L. Destruction of long-range order in one-dimensional and

two-dimensional system possessing a continous symmetry group - ii. quan-

tum systems. Soviet Physics JETP 34, 610 (1971).

[302] Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase

transitions in two dimensional systems. J. Phys. C: Solid State Physics 6,

1181 (1973).
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