
PRL 96, 040405 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 FEBRUARY 2006
Quantized Vortices in the Ideal Bose Gas: A Physical Realization of Random Polynomials

Yvan Castin,1 Zoran Hadzibabic,1 Sabine Stock,1 Jean Dalibard,1 and Sandro Stringari1,2,3

1Laboratoire Kastler Brossel, Ecole normale supérieure, 24 rue Lhomond, 75005 Paris, France
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We propose a physical system allowing one to experimentally observe the distribution of the complex
zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared
in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the
locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed
in the density profile of the gas.
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An important field of study in theoretical statistical
physics concerns the properties of the roots of random
polynomials [1,2]. Of particular interest is the so-called
Weyl polynomial for the complex variable � :

P��� �
Xmmax

m�0

am
�m������
m!
p ; (1)

where the am’s are independent random complex numbers
with the same Gaussian probability distribution. The roots
of P in the complex plane can be mapped to a two-
dimensional (2D) gas of particles with repulsive interac-
tions. They are spatially antibunched, and have a uniform
mean density in the large mmax limit [3].

Although the statistical properties of the roots of the
Weyl polynomial have been well studied theoretically, no
physical system has allowed yet to observe them directly.
In this Letter we show that a 2D rotating ideal Bose gas is a
well-suited system for this observation. The positions of
the vortices appearing in the gas can be mapped to the
zeros of the random polynomial describing the atomic
state. More precisely, the gas is harmonically trapped and
it rotates at a frequency close to the trapping frequency so
that it is ‘‘frozen’’ in the lowest Landau level (LLL) [4–6].
Its finite temperature T ensures that several vortices are
present in the region where atomic density is significant,
and thermal fluctuations provide the randomness of the
vortex locations in different realizations of the experiment.
Such an experiment is not unrealistic: a 2D atomic Bose
gas in the LLL has recently been produced [7], and the use
of a Fano-Feshbach scattering resonance allows the near
cancellation of the interactions between ultracold atoms
[8]. This regime of an ideal gas with large thermal fluctua-
tions dramatically differs from the well-studied case of a
rotating and interacting Bose-Einstein condensate in the
LLL at T � 0, where the vortices are known to form an
Abrikosov lattice [4,5,7].

The ideal gas in our model is confined in a harmonic
trap, with oscillation frequency ! in the xy plane and !z
along z. The confinement along z is assumed to be strong,
kBT � @!z, so that the z degree of freedom is frozen and
06=96(4)=040405(4)$23.00 04040
the gas is kinematically two dimensional. We also assume
that some angular momentum has been transferred to the
gas by a stirring procedure [9], so that thermal equilibrium
is reached in a frame rotating at frequency � around z. � is
chosen close to the trapping frequency !:

!��� !; (2)

which is experimentally realistic since the value �!���=
! � 0:01 has already been achieved [7]. We also assume
that the gas is cooled to a low enough temperature, kBT �
2@!, so that the relevant single particle states are linear
combinations of the LLL eigenmodes [4,5]:

�m�x; y� �
�m����������
�m!
p e���

�=2; � � x� iy: (3)

Here aho �
��������������
@=M!

p
(whereM is the atomic mass) is taken

as the unit of length. The mode energy �m � m@�!���
depends on a single quantum number m � 0 so that ther-
modynamically the gas is effectively one dimensional.

The relevant quantity in our study is the density of
vortices, which we will define in relation with the complex
classical field  �r� describing the state of the gas. This
classical field represents not only the state of the ground
mode �0 (where a vortex-free condensate forms at low
enough temperature), but also the states of all other modes.
We obtain  using the expression for the many-body
density operator �̂ of the ideal gas in thermal equilibrium
in the grand canonical ensemble [10]:

�̂ �
Z

D P�f g�jcoh:  ihcoh:  j: (4)

In this expression �̂ is a statistical mixture of Glauber
coherent states jcoh: i, with positive weights P�f g� (the
so-called Glauber P distribution) given by the Gaussian
functional specified below. A given realization of the ex-
periment can then be viewed as a random draw of the
atomic field state  , with the probability law P�f g�.

The stochastic nature of  is simple to characterize by
expanding it on the eigenmodes �m:
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FIG. 1. Density plots for three randomly generated fields  ,
using the grand canonical ensemble for kBT � 500�1 [�1 �
@�!���]. Left column: � � �10�1, mean number of particles
N � 1986; middle column: � � ��1, N � 3396; right column:
� � �0:1�1, N � 8320. First line: ln�j �r�j2�. Second line:
j �r�j2. Third line: simulation of a real experiment; N random
atomic positions are generated according to the density j �r�j2,
and a 129� 129 pixel ‘‘camera’’ image is produced assuming
that each atom produces a Gaussian spot of � � 0:2aho. The
width of each image is 10aho.
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 �r� �
X
m�0

am�m�r�: (5)

The am’s are complex, statistically independent random
numbers, with a Gaussian law:

P�f g� /
Y
m�0

e�jamj
2=nm ; (6)

where nm � 	exp����m ����� 1
�1 is the mean occupa-
tion number of mode m. Here � � 1=kBT and � is the
chemical potential. This provides a clear link with the
random polynomial of Eq. (1) when several nm have simi-
lar values:

 �r� � f���
e���

�=2����
�
p ; f��� �

X
m

am
�m������
m!
p : (7)

When f��� is factorized as f��� /
Q
i�� � �i�, each root �i

corresponds to the location of a positively charged vortex
in the field  . Since having a multiple root is a zero
measure event, these vortices are of charge unity. Note
that  results from the interference of a large number of
macroscopically populated field modes, reminiscent of the
interference of independent condensates [11,12].

The standard case where all the am’s have the same
variance corresponds in our model to all �m’s being equal,
i.e., � � !. The average vortex density is then uniform,
��v � 1=� and the average pair distribution function
�2�r� u=2; r� u=2�, which depends only on the relative
distance u, can be calculated analytically [2]. However,
this case cannot be achieved experimentally since for � �
!, the centrifugal force exactly balances the trapping force
and the gas is not confined anymore. In a realistic model
one must address the case �<!, for which the trapping
force overcomes the centrifugal one. The statistics of the
roots then do not coincide with the standard results of the
literature, and we must perform a study of this specific
model.

To provide an intuitive understanding on how the roots
of f��� are distributed, we first show in Fig. 1 numerical
results for a randomly generated field  . We take kBT �
500@�!���, which is compatible with the condition
kBT � 2@! for the experimentally realistic value � �
0:999!. On the first and second lines of Fig. 1, we show
plots of ln�j j2� and j j2, respectively, for 3 values of�. In
all cases, the locations of the roots are clearly visible.

We now turn to an analytic study of the problem and we
express the algebraic density of vortices �v�r� in terms of
 and its derivatives [13]. A helpful simplification is to
eliminate the Gaussian factor in Eq. (7), which does not
change the vortex locations, and use f��� rather than  �r�
as a random field. Using @yf��� � i@xf��� � if0���, we
obtain �v�r� � jf0j2	�2�	f���
 making it obvious that all
vortices have a positive charge in the LLL.

The expectation value of �v gives the average vortex
density ��v, the correlation function h�v�r� u=2��v�r�
u=2�i gives the vortex pair distribution function �2, etc.
Using properties of Gaussian statistics, these quantities can
04040
be expressed in terms of expectation values of products of
two fields, such as f, f�, or their derivatives with respect to
� [2]. The explicit result for ��v is

�� v�r� �
hf0�f0i
�hf�fi

�
hf�f0ihff0�i

�hf�fi2
: (8)

The expectation values h. . .i are readily calculated using
ha�mam0 i � nm	m;m0 . Figure 2 gives the variation of ��v with
the distance r from the trap center, for the temperature and
the three values of the chemical potential used in Fig. 1.

The general expression for the pair distribution function
�2 is rather involved, and we give it only for small relative
distances u. It vanishes quadratically with u, showing the
effective repulsion between the vortices

�2

�
r�

u
2
; r�

u
2

�
� C�r�

u2

8�2 �O�u
3�; (9)

where C is a function of f, f�, and their first and second
derivatives [14].

We find that the experimentally relevant situation �<
! leads to results similar to those of the standard random
polynomial theory (formally corresponding to � � !) in
the vicinity of the trap center when the two following
conditions are fulfilled. First, many eigenmodes have to
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be thermally populated:

kBT � @�!���: (10)

Second, the low energy modes must have comparable
populations, imposing a negative chemical potential
j�j � @�!���. This is the situation depicted in the
left column of Fig. 1 and in Fig. 2(a).

If j�j is reduced for a fixed T, the mean number of atoms
increases and an imbalance appears among the populations
of the low energy modes. The vortex density is then
depleted near the trap center, as can be seen in the middle
and right columns of Fig. 1, and in Fig. 2(b) and 2(c).
Eventually, for j�j � @�!���, the total population of
the modes m � 0 saturates and a condensate forms in the
mode m � 0. This condensate has no vortex and it expels
the thermal vortices, which accumulate in a corona with a
density locally exceeding 1=� [Fig. 2(c)].

The situation at the onset of condensation is relevant
experimentally since it is tempting to increase the number
of atoms in order to improve the experimental signal. To
extend quantitatively our analysis to this regime, we must
replace the grand canonical ensemble, which presents non-
physical, large fluctuations of the total particle number
when a condensate is present, by the canonical ensemble.
We then adapt our definition of the vortex distribution by
projecting Eq. (4) on a subspace with a fixed total number
of particles N, resulting in the following probability dis-
tribution of the field  :

Pc�f g� / P�f g�
k k2N

N!
e�k k

2
; (11)
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FIG. 2. Vortex ( ��v) and atomic (�) densities. Solid line: result
for ��v in the grand canonical ensemble. Dashed line: result for
��v in the canonical ensemble with the same mean number of
particles N. Dotted line: result for �=100 in the grand canonical
ensemble. kBT � 500�1 with �1 � @�!���. (a) � � �10�1

(N � 1986). (b) � � ��1 (N � 3396). (c) � � �0:1�1 (N �
8320). The unit length is aho.
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where k k2 �
R
j j2. The key change with respect to the

grand canonical ensemble is that the probability distribu-
tion of the field is no longer Gaussian, showing that the
proposed physical system opens a new class of problems.
We evaluate numerically the vortex density using a gen-
erating function technique [15]. In the trap center, one can
also construct an exact mapping to a solvable problem, the
calculation of the canonical partition function and occupa-
tion numbers for a 1D ideal Bose gas in a harmonic trap
[16]. This leads to the exact expression

�� c
v�r � 0� �

1� e���1

�

�
1

e��1 � 1
� nc1

�
; (12)

where nc1 is the mean number of particles in the first excited
mode m � 1 (with �1 � @�!���) in the canonical en-
semble [17]. As shown in Fig. 2(c), the correct canonical
result drops to a much smaller value than the incorrect
grand canonical result in the trap center. In the large N
limit, one can show that ��cv�0�  N exp	��N � 1���1
=�,
whereas the grand canonical prediction tends to zero
only as 1=N. Note that ��cv�0� drops with N similarly to
the probability exp��N��1� of having an empty conden-
sate mode, which is a natural condition to have a vortex in
r � 0.

How to observe the vortex density in practice? In current
experiments with rotating interacting condensates, one
measures the positions of the particles and the vortices
appear as holes in the density profile [9]. This strategy
can be used in regions of space where the mean density of
particles � greatly exceeds the density of vortices ��v, here
1=�. To each vortex embedded in such a high density
region will correspond a clearly identifiable hole in the
particle distribution. The maximal density of the noncon-
densed fraction of the gas is kBT=	�@�!���
 close to
the trap center, obtained for j�j � @�!���. Then ��
��v when Eq. (10) is satisfied. To indicate up to what
distance from the trap center this condition holds, we
have also plotted ��r�=100 in Fig. 2.

Conversely, do all the holes embedded in high density
regions correspond to vortices? They may in principle
correspond to a local minimum of j j2, where the field
assumes a small but non zero value. Such ‘‘spurious’’ local
minima can in general form in a noncondensed ideal Bose
gas, which is subject to large density fluctuations due to the
thermal bunching effect of the bosons. However, we can
show that this phenomenon is absent in the LLL. We Taylor
expand the field  to second order in u � r� r0 around
the location r0 of a stationary point of j j2, assuming that
 �r0� � 0:

j �r�j2 � j �r0�j
2	1� u �Mu�O�u3�
; (13)

where the 2� 2 matrixM is real symmetric. One then finds
that the trace of M is

TrM � Re
� 
 
�

��������grad 
 

��������
2
� �2; (14)
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where we used Eq. (7) and grad�j j2� � 0 to get the last
identity. Since its trace is <0, M cannot be positive and
j j2 cannot have a local minimum at r0.

We exemplify this discussion by a Monte Carlo simula-
tion of a real experiment for the parameters of Fig. 1. The
results are shown on the last line of Fig. 1. Starting from the
random fields  previously generated, we have produced
these images by generating random positions of particles
according to the distribution j j2, and by mimicking the
finite imaging resolution of a real experiment. Local min-
ima of the density are visible, and can be checked on the
images of the first two lines to correspond to vortices. The
visibility of the vortex pattern could be improved by in-
creasing further the atom density. For a given ratio
kBT=@!, this can be achieved by rotating the gas even
faster, so that �!���=! decreases.

In real life, there are interactions between the particles,
characterized by the 3D s-wave scattering length a. The
interaction potential in the LLL is modeled by the pseudo-
potential g	�2��r1 � r2�, with g �

�������
8�
p

@!a=az, where
az �

����������������
@=M!z

p
. We now derive a condition on a for the

interactions to play a negligible role on the vortex distri-
bution. Focusing on the quasihomogeneous regime j�j �
@�!���, we set � � !. The unperturbed occupation
numbers then all have the same value n0. The mean vortex
density being uniform, we consider the first order correc-
tion in g to the vortex pair distribution function �2�u�.
Assuming n0 � 1 we obtain

	�2�u�

��0�2 �u�
’�

�g
2

Z
d2r

�
h�v�0��v�u�j �r�j4i

��0�2 �u�
�hj �r�j4i

�
;

(15)

where the average is taken over the unperturbed distribu-
tion. The right-hand side of Eq. (15) can be expressed
analytically. It is maximal (in absolute value) in u � 0:

lim
u!0

	�2�u�

��0�2 �u�
� �

3�gn2
0

16�
/
g�
j�j

; (16)

whereas it drops as u4e�u
2=2 at large distances. Interactions

will then play a negligible role in the vortex distribution if
the mean field energy g� is much smaller than j�j. For the
realistic numbers kBT � @!=2, n0 � 100 and az � 1 �m,
this implies jaj & 0:2 nm.

In practice the scattering length can be tuned to such a
low value using a Fano-Feshbach resonance. The experi-
mental sequence should start with a larger value of a, to
rapidly cool the gas in the LLL regime. Subsequently, a is
set to its low value, and the residual elastic collisions
ensure thermalization in the quasi-ideal regime. Finally
the atom cloud is released from the trap, undergoes a free
ballistic expansion to magnify its size, and the atom dis-
tribution is measured, revealing the vortex positions. Since
the LLL modes are self-similar during the expansion [18],
each result of this destructive measurement corresponds to
a draw of a random polynomial.
04040
To summarize, the rotating quasi-ideal Bose gas is a
promising system to implement in practice the concepts
developed in the theory of random polynomials. It also
raises novel questions such as the influence of the non-
Gaussian statistics for the polynomial coefficients when a
condensate is present. Finally, we emphasize that our dis-
ordered vortex pattern appears in a nonsuperfluid system.
An interesting future line of research is the transition to an
ordered Abrikosov lattice when interactions are increased
and the system becomes superfluid.
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